Object Pascal
Language Guide

Borland ©

Delphi 5
for Windows 98, Windows 95, & Windows NT

Inprise Corporation
100 Enterprise Way, Scotts Valley, CA 95066-3249

Refer to the file DEPLOY.TXT located in the root directory of your Delphi 5 product for a complete list of files that you
can distribute in accordance with the Delphi 5 License Statement and Limited Warranty.

Inprise may have patents and/or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents.

COPYRIGHT © 1983, 1999 Inprise Corporation. All rights reserved. All Inprise and Borland brand and product names
are trademarks or registered trademarks of Inprise Corporation. Other brand and product names are trademarks or
registered trademarks of their respective holders.

Printed in the U.S.A.

HDE1350WW21002 3E2R899
9900010203-987654321
PDF

Contents

Chapter 1

Introduction 1-1

What'’s in thismanual? 1-1
Delphi and Object Pascal 1-1
Typographical conventions 1-2

Other sources of information. 1-2

Software registration and technical support . . 1-2

Part I

Basic language description

Chapter 2

Overview 2-1

Program organization. 2-1
Pascal source files 2-1
Other files used to build applications 2-2
Compiler-generated files 2-3

Example programs. 2-3
A simple console application 2-3
A more complicated example. 2-4
A Windows application 2-5

Chapter 3

Programs and units 3-1

Program structure and syntax 3-1
The program heading 3-2
The program uses clause 3-2
Theblock 3-2

Unit structure and syntax. 3-3
Theunitheading 3-3
The interface section 3-4
The implementation section. 3-4
The initialization section. 3-4
The finalization section 3-5

Unit references and the uses clause 3-5
The syntax of auses clause 3-5
Multiple and indirect unit references 3-6
Circular unit references 3-7

Chapter 4

Syntactic elements 4-1

Fundamental syntactic elements. 4-1
Special symbols. 4-2
Identifiers 4-2

Qualified identifiers 4-2

Reservedwords 4-3
Directives. 4-3
Numerals. 4-4
Labels. 4-4
Character strings 4-4
Comments and compiler directives. 4-5
Expressions 4-5
Operators. 4-6
Arithmetic operators 4-6
Boolean operators 4-7
Logical (bitwise) operators 4-8
String operators 4-9
Pointer operators. 4-9
Setoperators 4-10
Relational operators 4-10
Classoperators. 4-11
The@operator. 4-11
Operator precedencerules 4-12
Functioncalls 4-13
Setconstructors 4-13
Indexes 4-13
Typecasts. 4-14
Value typecasts. 4-14
Variable typecasts 4-14
Declarations and statements. 4-16
Declarations 4-16
Statements 4-16
Simple statements. 4-16
Assignment statements 4-17
Procedure and functioncalls 4-17
Gotostatements 4-18
Structured statements. 4-19
Compound statements 4-19
With statements 4-20
Ifstatements 4-21
Casestatements 4-23
Controlloops. 4-24
Repeat statements 4-24
While statements. 4-25
Forstatements 4-25
Blocksandscope 4-27
Blocks., 4-27
Scope 4-27

Naming conflicts. 4-28

Chapter 5
Data types, variables, and constants 5-1
Abouttypes. 5-1
Simpletypes 5-2
Ordinaltypes 5-2
Integertypes. 5-3
Charactertypes 5-4
Booleantypes 5-5
Enumerated types 5-6
Subrangetypes 5-7
Realtypes. 5-8
Stringtypes. 5-9
Shortstrings. 5-11
Longstrings. 5-11
WideString 5-12
About extended character sets 5-12
Working with null-terminated strings5-12
Using pointers, arrays, and string
constants. 5-13
Mixing Pascal strings and
null-terminated strings. 5-14
Structured types 5-15
Sets. 5-16
Arrayso 5-16
Staticarrays 5-17
Dynamicarrays. 5-17
Array types and assignments 5-20
Records 5-20
Variant partsinrecords 5-21
Filetypes 5-23
Pointers and pointer types 5-24
Overview of pointers 5-24
Pointertypes 5-26
Character pointers 5-26
Other standard pointer types 5-26
Proceduraltypes. 5-27
Procedural types in statements and
expressions 5-28
Varianttypes 5-29
Variant type conversions 5-30
Variants in expressions 5-32
Variantarrays. 5-32
OleVariant. 5-33
Type compatibility and identity 5-33
Typeidentity 5-33
Type compatibility 5-34

Assignment-compatibility. 5-34

ii

Declaring types 5-35
Variables 5-36
Declaring variables 5-36
Absolute addresses 5-37
Dynamic variables. 5-37
Thread-local variables. 5-38
Declared constants 5-38
Trueconstants 5-38
Constant expressions 5-39
Resourcestrings 5-40
Typedconstants 5-40
Array constants 5-41
Recordconstants. 5-41
Procedural constants 5-42
Pointer constants. 5-42

Chapter 6
Procedures and functions

Declaring procedures and functions 6-1
Procedure declarations 6-2
Function declarations. 6-3
Calling conventions. 6-4
Forward and interface declarations 6-5
External declarations 6-6

Linking to .OBJ files 6-6
Importing functions from DLLs 6-7
Overloading procedures and functions. . . .6-7
Local declarations. 6-8
Nested routines 6-9

Parameters. 6-9

Parameter semantics 6-10
Value and variable parameters. 6-10
Constant parameters 6-11
Out parameters. 6-11
Untyped parameters. 6-12

String parameters 6-13

Array parameters 6-13
Open array parameters 6-13
Variant open array parameters. 6-15

Default parameters 6-16
Default parameters and overloaded

routines 6-17
Default parameters in forward and
interface declarations 6-17

Calling procedures and functions. 6-17

Open array constructors 6-18

Chapter 7

Classes and objects 7-1
Classtypes 7-1
Inheritance and scope 7-2
TObjectand TClass 7-3
Compatibility of class types 7-3
Objecttypes 7-3
Visibility of class members 7-4
Private, protected, and public
members. 7-5
Published members. 7-5
Automated members. 7-5
Forward declarations and mutually
dependentclasses. 7-6
Fields 7-7
Methods. 7-8
Method implementations 7-8
Inherited 7-8
Self 79
Method binding 7-9
Staticmethods. 7-9
Virtual and dynamic methods. 7-10
Abstract methods 7-11
Overloading methods 7-12
Constructors 7-12
Destructors 7-14
Messagehandlers 7-15
Implementing message handlers 7-15
Message dispatching 7-15
Properties. 7-16
Propertyaccess. 7-16
Array properties 7-18
Index specifiers. 7-19
Storage specifiers. 7-20
Property overrides and redeclarations. . . .7-20
Classreferences 7-22
Class-reference types. 7-22
Constructors and class references. 7-22
Classoperators 7-23
Theisoperator 7-23
Theasoperator 7-24
Classmethods 7-24
Exceptions 7-25
Declaring exception types. 7-25
Raising and handling exceptions. 7-25

Try..except statements 7-26

Re-raising exceptions 7-28
Nested exceptions 7-29
Try...finally statements 7-30
Standard exception classes and routines . . 7-30
Chapter 8
Standard routines and I/O 8-1
Fileinputand output. 8-1
Textfiles 8-3
Untypedfiles. 8-4
Text-file device drivers. 8-4
Device functions. 8-5
The Open function. 8-5
The InOut function 8-5
The Flush function. 8-6
The Close function. 8-6
Handling null-terminated strings. 8-6
Wide-character strings 8-7
Other standard routines 8-7
Part II
Special topics
Chapter 9
Dynamic-link libraries and packages 9-1
CallingDLLs 9-1
Staticloading. 9-1
Dynamicloading. 9-2
Writing DLLs 9-3
The exportsclause. 9-4
Library initializationcode 9-4
Global variablesinaDLL 9-5
DLLs and System variables 9-5
Exceptions and runtime errors in DLLs. . . .9-6
The shared-memory manager 9-6
Packages. 9-7
Package declarations and source files. 9-7
Naming packages 9-8
The requiresclause 9-8
The contains clause 9-8
Compiling packages 9-9
Generated files. 9-9
Package-specific compiler directives . . . 9-9
Package-specific command-line
compiler switches 9-10

Chapter 10

Object interfaces 10-1
Interfacetypes 10-1
IUnknown and inheritance 10-2
Interface identification. 10-2
Calling conventions 10-3
Interface properties. 10-3
Forward declarations 10-3
Implementing interfaces 10-4
Method resolution clauses. 10-5
Changing inherited implementations10-5
Implementing interfaces by delegation . . .10-6

Delegating to an interface-type

property 10-6
Delegating to a class-type property. . . .10-7
Interfacereferences 10-8

Interface assignment-compatibility. 10-9

Interface typecasts 10-9
Interface querying 10-9
Automationobjects 10-10
Dispatch interface types. 10-10
Dispatch interface methods 10-11
Dispatch interface properties 10-11
Accessing Automation objects 10-11
Automation object method-call
syntax. 10-12
Dualinterfaces 10-12
Chapter 11
Memory management 11-1
Delphi’s memory manager 11-1
Variables. 11-2
Internal data formats 11-2
Integertypes 11-2
Charactertypes. 11-3
Booleantypes. 11-3
Enumerated types 11-3
Realtypes. 11-3
The Reald8type. 11-4
The Singletype 11-4
The Doubletype 11-4
The Extended type 11-5
TheComptype 11-5
The Currency type 11-5
Pointertypes 11-5
Short string types. 11-5
Long string types. 11-5
Wide string types. 11-6

iv

Settypes 11-6
Staticarray types 11-7
Dynamic array types 11-7
Recordtypes. 11-7
Filetypes. 11-8
Procedural types. 11-9
Classtypes. 11-9
Class reference types 11-10
Varianttypes. 11-10
Chapter 12
Program control 12-1
Parameters and functionresults. 12-1
Parameter passing. 12-1
Register saving conventions 12-3
Functionresults 12-3
Methodcalls. 12-3
Constructors and destructors. 12-4
Exitprocedures 12-4
Chapter 13
Inline assembler code 13-1
The asm statement 13-1
Registeruse 13-2
Assembler statement syntax. 13-2
Labels. 13-2
Instructionopcodes 13-3
RET instruction sizing. 13-4
Automatic jump sizing 13-4
Assembler directives 13-5
Operands. 13-6
Expressions 13-7
Differences between Object Pascal and
assembler expressions. 13-7
Expressionelements 13-8
Constants. 13-8
Registers 13-10
Symbols. 13-10
Expressionclasses. 13-12
Expressiontypes. 13-13
Expression operators 13-14
Assembler procedures and functions. 13-16
Appendix A
Object Pascal grammar A-1
Index -1

4.1
42
43
44
45
4.6
47
48
49
4.10
4.11
5.1

52
53
54
55
5.6

5.7
5.8
6.1

Reservedwords 4-3
Directives. 43
Binary arithmetic operators 4-6
Unary arithmetic operators. 4-6
Boolean operators 4-7
Logical (bitwise) operators 4-8
String operators 49
Character-pointer operators 4-9
Setoperators 4-10
Relational operators. 4-10
Precedence of operators. 4-12
Generic integer types for 32-bit
implementations of Object Pascal 5-3
Fundamental integer types 5-3
Fundamental real types. 5-8
Genericreal types 5-9
Stringtypes. 5-9
Selected pointer types declared in

System and SysUtils. 5-26
Variant type conversionrules 5-31
Types for integer constants 5-39
Calling conventions 6-5

8.1

8.2
8.3
9.1
9.2
9.3

11.1
11.2
11.3
11.4
11.5
13.1
13.2
13.3
13.4

13.5
13.6

13.7

Input and output procedures and

functions. L.
Null-terminated string functions
Other standard routines
Compiled package files

Package-specific compiler directives

Package-specific command-line
compiler switches.
Long string dynamic memory layout . .
Wide string dynamic memory layout . .
Dynamic array memory layout
Type alignment masks
Virtual method table layout
Built-in assembler reserved words
String examples and their values
CPU registers
Symbols recognized by the built-in
assembler
Predefined type symbols.
Precedence of built-in assembler
expression operators
Definitions of built-in assembler
expression operators

vi

Introduction

This manual is about the Object Pascal programming language as it is used in Delphi.

What's in this manual?

The first seven chapters describe most of the language elements used in ordinary
programming. Chapter 8 summarizes standard routines for file I/O and string
manipulation.

The next chapters describe language extensions and restrictions for dynamic-link
libraries and Delphi packages (Chapter 9), and for object interfaces and COM
(Chapter 10). The final three chapters address advanced topics: memory
management (Chapter 11), program control (Chapter 12), and assembly-language
routines within Object Pascal programs (Chapter 13).

Delphi and Object Pascal

Most Delphi developers write and compile their code in Delphi’s integrated
development environment (IDE). Delphi handles many details of setting up projects
and sourece files, such as maintenance of dependency information among units.
Delphi also places constraints on program organization that are not, strictly
speaking, part of the Object Pascal language specification. For example, Delphi
enforces certain file- and program-naming conventions that you can avoid if you
write your programs outside of the IDE and compile them from the command
prompt.

This manual generally assumes that you are working in Delphi’s IDE and that you
are building applications that use the Visual Component Library (VCL).
Occasionally, however, Delphi-specific rules are distinguished from rules that apply
to all Object Pascal programming.

Introduction 1-1

Other sources of information

Typographical conventions

Identifiers—that is, names of constants, variables, types, fields, properties,
procedures, functions, programs, units, libraries, and packages—appear in italics in
the text. Object Pascal operators, reserved words, and directives are in boldface type.
Example code and text that you would type literally (into a file or at the command
prompt) are in monospaced type.

In displayed program listings, reserved words and directives appear in boldface, just
as they do in the text:

function Calculate(X, Y: Integer): Integer;
begin
end;

This is how Delphi’s Code editor displays reserved words and directives, if you have
the Syntax Highlight option turned on.

Some program listings, like the example above, contain ellipsis marks (... or :). The
ellipses represent additional code that would be included in an actual file. They are
not meant to be copied literally.

In syntax descriptions, italics indicate placeholders for which, in real code, you would
substitute syntactically valid constructions. For example, the heading of the function
declaration above could be represented as

function functionName (argumentList): returnType;
Syntax descriptions can also contain ellipsis marks (...) and subscripts:

function functionName(argy, ..., arg,): ReturnType;

Other sources of information

Delphi’s online Help system provides information about the IDE and user interface
as well as the most up-to-date reference material for the VCL. Many programming
topics, such as database development, are covered in depth in the Developer’s Guide.
For an overview of the Delphi documentation set, see the Quick Start manual that
came with your copy of Delphi.

Software registration and technical support

Inprise offers a range of support plans to fit the needs of individual developers,
consultants, and corporations. To receive help with this product, return the
registration card and select the plan that best suits your needs. For additional
information about technical support and other Inprise services, contact your local
sales representative or visit us online at http:/ /www.inprise.com/.

For information about year 2000 issues and our products, see the following URL:
http:/ /www.inprise.com/devsupport/y2000/.

1-2 Object Pascal Language Guide

Basic language description

The chapters in Part I present the essential language elements required for most
programming tasks. These chapters include:

Chapter 2, “Overview”

Chapter 3, “Programs and units”

Chapter 4, “Syntactic elements”

Chapter 5, “Data types, variables, and constants”
Chapter 6, “Procedures and functions”

Chapter 7, “Classes and objects”

Chapter 8, “Standard routines and 1/0O”

Basic language description

Overview

Object Pascal is a high-level, compiled, strongly typed language that supports
structured and object-oriented design. Its benefits include easy-to-read code, quick
compilation, and the use of multiple unit files for modular programming.

Object Pascal has special features that support Delphi’s component framework and
RAD environment. For the most part, descriptions and examples in this manual
assume that you are using Object Pascal to develop Delphi applications.

Program organization

Programs are usually divided into source-code modules called units. Each program
begins with a heading, which specifies a name for the program. The heading is
followed by an optional uses clause, then a block of declarations and statements. The
uses clause lists units that are linked into the program; these units, which can be
shared by different programs, often have uses clauses of their own.

The uses clause provides the compiler with information about dependencies among
modules. Because this information is stored in the modules themselves, Object Pascal
programs do not require makefiles, header files, or preprocessor “include” directives.
(Delphi’s Project Manager generates a makefile each time a project is loaded in the

IDE, but saves these files only for project groups that include more than one project.)

For further discussion of program structure and dependencies, see Chapter 3,
“Programs and units.”

Pascal source files

The compiler expects to find Pascal source code in files of three kinds:

¢ unit source files, which end with the .PAS extension,
* project files, which end with the .DPR extension, and
* package source files, which end with the .DPK extension.

Overview 2-1

Program organization

Unit source files contain most of the code in an application. Each Delphi application
has a single project file and several unit files; the project file—which corresponds to
the “main” program file in traditional Pascal—organizes the unit files into an
application. Delphi automatically maintains a project file for each application.

If you are compiling a program from the command line, you can put all your source
code into unit (.PAS) files. But if you use the Delphi IDE to build your application,
you must have a project (.DPR) file.

Package source files are similar to project files, but they are used to construct special
dynamic-link libraries called packages. For more information about packages, see
Chapter 9, “Dynamic-link libraries and packages.”

Other files used to build applications

In addition to source-code modules, Delphi uses several non-Pascal files to build
applications. These files are maintained automatically by Delphi and include

 form files, which end with the .DFM extension,
o resource files, which end with the .RES extension, and
e project options files, which end with the .DOF extension.

A form (.DFM) file is either a text file or a compiled Windows resource file that can
contain bitmaps, strings, and so forth. Each form file represents a single Delphi form,
which usually corresponds to a window or dialog box in a Windows application. The
Delphi IDE allows you to view and edit form files as text, and to save form files as
either text or binary. Although the default behavior is to save form files as text, they
are usually not edited manually; it is more common to use Delphi’s visual design
tools for this purpose. Each Delphi project has at least one form, and each form has an
associated unit (.PAS) file that, by default, has the same name as the form file.

In addition to form files, each Delphi project uses a standard Windows resource
(.RES) file to hold the bitmap for the application’s icon. By default, this file has the
same name as the project (.DPR) file. To change an application’s icon, use Delphi’s
Project Options dialog.

A project options (.DOF) file contains compiler and linker settings, search directories,
version information, and so forth. Each project has an associated project options file

with the same name as the project (.DPR) file. Usually, the options in this file are set

from Delphi’s Project Options dialog.

Various tools in the Delphi IDE store data in files of other types. Desktop settings
(.DSK) files contain information about the arrangement of windows and other
configuration options; .DSK files can be project-specific or environment-wide. The
Integrated Translation Environment generates .RPS and .DFEN files that contain
information about resource localization. The Data Module Designer maintains
diagram descriptions in .DTI files. These files have no direct effect on compilation.

2-2 Object Pascal Language Guide

Example programs

Compiler-generated files

The first time you build an application or a standard dynamic-link library, the
compiler produces a .DCU (Delphi compiled unit) file for each new unit used in your
project; all the .DCU files in your project are then linked to create a single .EXE
(executable) or .DLL file. The first time you build a package, the compiler produces a
.DCU file for each new unit contained in the package, and then creates both a .DCP
and a .BPL file. (For more information about dynamic-link libraries and packages, see
Chapter 9, “Dynamic-link libraries and packages.”) If you use the -GD switch, the
linker generates a map file and a .DRC file; the .DRC file, which contains string
resources, can be compiled into a resource file.

When you rebuild a project, individual units are not recompiled unless their source
(.PAS) files have changed since the last compilation, or their .DCU files cannot be
found, or you explicitly tell the compiler to reprocess them. In fact, it is not necessary
for a unit’s source file to be present at all, as long as the compiler can find the .DCU
file.

Example programs

The examples that follow illustrate basic features of Object Pascal and Delphi
programming. The first two examples are not Delphi applications, but you can
compile them from the command line.

A simple console application

The program below is a simple console application that you can compile and run
from the command prompt.

program Greeting;
{SAPPTYPE CONSOLE}
var MyMessage: string;

begin
MyMessage := 'Hello world!';
Writeln(MyMessage);

end.

The first line declares a program called Greeting. The {$APPTYPE CONSOLE} directive tells
the compiler that this is a console application, to be run from the command line. The
next line declares a variable called MyMessage, which holds a string. (Object Pascal
has genuine string data types.) The program then assigns the string “Hello world!” to
the variable MyMessage, and sends the contents of MyMessage to the standard output
using the Writeln procedure. (Writeln is defined implicitly in the System unit, which
the compiler automatically includes in every application.)

Overview 2-3

Example programs

If you have Delphi installed and your Path includes the Delphi\Bin directory (where
DCC32.EXE and DCC32.CFG reside), you can type this program into a file called
GREETING.PAS or GREETING.DPR and compile it by entering

DCC32 GREETING

on the command line. The resulting executable (GREETING.EXE) prints the message
“Hello world!”

Aside from its simplicity, this example differs in several important ways from
programs that you are likely to write with Delphi. First, it is a console application.
Delphi is typically used to write Windows applications with graphical interfaces;
hence, in a Delphi application you would not ordinarily call Writeln. Moreover, the
entire example program (save for Writeln) is in a single file. In a Delphi application,
the program heading—the first line of the example—would be placed in a separate
project file that would not contain any of the actual application logic, other than a
few calls to methods defined in unit files.

A more complicated example

The next example shows a program that is divided into two files: a project file and a
unit file. The project file, which you can save as GREETING.DPR, looks like this:

program Greeting;
{SAPPTYPE CONSOLE}
uses Unitl;

begin
PrintMessage ('Hello World!');
end.

The first line declares a program called Greeting, which, once again, is a console
application. The uses Unitl; clause tells the compiler that Greeting includes a unit
called Unitl. Finally, the program calls the PrintMessage procedure, passing to it the
string “Hello World!” Where does the PrintMessage procedure come from? It’s
defined in Unitl. Here’s the source code for Unitl, which you can save in a file called
UNIT1.PAS:

unit Unitl;
interface
procedure PrintlMessage(msg: string);
implementation
procedure PrintlMessage(msg: string);
begin

Writeln(msg);

end;

end.

2-4 Object Pascal Language Guide

Example programs

Unit1 defines a procedure called PrintMessage that takes a single string as an
argument and sends the string to the standard output. (In Pascal, routines that do not
return a value are called procedures. Routines that return a value are called functions.)
Notice that PrintMessage is declared twice in Unit1. The first declaration, under the
reserved word interface, makes PrintMessage available to other modules (such as
Greeting) that use Unitl. The second declaration, under the reserved word
implementation, actually defines PrintMessage.

You can now compile Greeting from the command line by entering
DCC32 GREETING

There’s no need to include Unitl as a command-line argument. When the compiler
processes GREETING.DPR, it automatically looks for unit files that the Greeting
program depends on. The resulting executable (GREETING.EXE) does the same
thing as our first example: it prints the message “Hello world!”

A Windows application

Our next example is a Windows application built with Delphi’s Visual Component
Library (VCL). This program uses Delphi-generated form and resource files, so you
won’t be able to compile it from the source code alone. But it illustrates important
features of Object Pascal. In addition to multiple units, the program uses classes and
objects, which are discussed in Chapter 7, “Classes and objects.”

The program includes a project file and two new unit files. First, the project file:

program Greeting; { comments are enclosed in braces }

uses
Forms,
Unitl { the unit for Forml },
Unit2 { the unit for Form?2 };

{SR *.RES} { this directive links the project's resource file }

begin
{ calls to Application }
Application.Initialize;
Application.CreateForm(TForml, Forml);
Application.CreateForm(TForm2, Form2);
Application.Run;

end.

Once again, our program is called Greeting. It uses three units: Forms, which is part of
the VCL; Unitl, which is associated with the application’s main form (Form1); and
Unit2, which is associated with another form (Form?2).

The program makes a series of calls to an object named Application, which is an
instance of the TApplication class defined in the Forms unit. (Every Delphi project has
an automatically generated Application object.) Two of these calls invoke a
TApplication method named CreateForm. The first call to CreateForm creates Form1, an

Overview 2-5

Example programs

instance of the TForm1 class defined in Unitl. The second call to CreateForm creates
Form2, an instance of the TForm?2 class defined in Unit2.

Unitl looks like this:

unit Unitl;
interface

uses { these units are part of Delphi's Visual Component Library (VCL) }
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs, StdCtrls;

type
TForml = class(TForm)
Buttonl: TButton;
procedure ButtonlClick(Sender: TObject);
end;

var
Forml: TForml;

implementation
uses Unit2; { this is where Form2 is defined }
{SR *.DFM} { this directive links Unitl's form file }

procedure TForml.ButtonlClick(Sender: TObject);
begin

Forml.Hide;

Form2 . Show;
end;

end.

Unit1 creates a class named TForm1 (derived from the VCL’s TForm) and an instance
of this class, Form1. TForm1 includes a button—Buttonl, an instance of TButton—and
a procedure named TForm1.Button1Click that is called at runtime whenever the user
presses Button1. TForm1.Button1Click does two things: it hides Form1 (the call to
Form1.Hide) and it displays Form?2 (the call to Form2.Show). Form2 is defined in Unit2:

unit Unit2;
interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls;

type
TForm2 = class(TForm)
Labell: TLabel;
CancelButton: TButton;

2-6 Object Pascal Language Guide

Example programs

procedure CancelButtonClick(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);
end;

var
Form2: TForm2;

implementation
uses Unitl;
{SR *.DFM}

procedure TForm2.CancelButtonClick(Sender: TObject);
begin

Form2.Close;
end;

procedure TForm?2.Form2Close(Sender: TObject; var Action: TCloseAction);
begin

Forml.Show;
end;

end.

Unit2 creates a class named TForm2 and an instance of this class, Form2. TForm?2
includes a button (CancelButton, an instance of TButton) and a label (Labell, an
instance of TLabel). You can’t see this from the source code, but Labell displays a
caption that reads “Hello world!” The caption is defined in Form2’s form file,
UNIT2.DFM.

Unit2 defines two procedures. TForm2.CancelButtonClick is called at runtime
whenever the user presses CancelButton; it closes Form2. TForm2.FormClose is called at
runtime whenever Form?2 closes; it reopens Form1. These procedures (along with
Unit1’s TForm1.Button1Click) are known as event handlers because they respond to
events that occur while the program is running. Event handlers are assigned to
specific events by the form (.DFM) files for Form1 and Form?2.

When the Greeting program starts, Form1 is displayed and Form?2 is invisible. (By
default, only the first form created in the project file is visible at runtime. This is
called the project’s main form.) When the user presses the button on Form1, Form1
disappears and is replaced by Form2, which displays the “Hello world!” greeting.
When the user closes Form2 (by pressing CancelButton or the Close button on the title
bar), Form1 reappears.

Overview 2-7

2-8 Object Pascal Language Guide

Programs and units

A program is constructed from source-code modules called units. Each unit is stored
in its own file and compiled separately; compiled units (.DCU files) are linked to
create an application. Units allow you to

¢ divide large programs into modules that can be edited separately.
¢ create libraries that you can share among programs.
e distribute libraries to other developers without making the source code available.

In traditional Pascal programming, all source code, including the main program, is
stored in .PAS files. Delphi uses a project (.DPR) file to store the “main” program,
while most other source code resides in unit (PAS) files. Each application—or
project—consists of a single project file and one or more unit files. (Strictly speaking,
you needn’t explicitly use any units in a project, but all programs automatically use
the System unit.) To build a project, the compiler needs either a source file or a
previously compiled DCU for each unit.

Program structure and syntax

A program contains

® a program heading,

* 2 uses clause (optional), and

¢ a block of declarations and statements.

The program heading specifies a name for the program. The uses clause lists units
used by the program. The block contains declarations and statements that are
executed when the program runs. The Delphi IDE expects to find these three
elements in a single project (DPR) file.

Programs and units 3-1

Program structure and syntax

The example below shows the project file for a program called Editor.

1 program Editor;

2

3 uses

4 Forms,

5 REAbout in 'REABOUT.PAS' {AboutBox},
6 REMain in 'REMain.pas' {MainForm};

7

8 {SR *.RES}

9
10 begin
11 Application.Title := 'Text Editor';
12 Application.CreateForm(TMainForm, MainForm);
13 Application.Run;
14 end.

Line 1 contains the program heading. The uses clause is on lines 3 through 6. Line 8 is
a compiler directive that links the project’s resource file into the program. Lines 10
through 14 contain the block of statements that are executed when the program runs.
Finally, the project file, like all source files, ends with a period.

This is in fact a fairly typical project file. Project files are usually short, since most of a
program’s logic resides in its unit files. Project files are generated and maintained by
Delphi, and it is seldom necessary to edit them manually.

The program heading

The program heading specifies the program’s name. It consists of the reserved word
program, followed by a valid identifier, followed by a semicolon. For Delphi
applications, the identifier must match the project file name. In the example above,
since the program is called Editor, the project file should be called EDITOR.DPR.

In standard Pascal, a program heading can include parameters after the program
name:

program Calc(input, output);

Delphi’s compiler ignores these parameters.

The program uses clause

The uses clause lists units that are incorporated into the program. These units may in
turn have uses clauses of their own. For more information about the uses clause, see
“Unit references and the uses clause” on page 3-5.

The block

The block contains a simple or structured statement that is executed when the
program runs. In most Delphi programs, the block consists of a compound
statement—bracketed between the reserved words begin and end—whose

3-2 Object Pascal Language Guide

Unit structure and syntax

component statements are simply method calls to the project’s Application object.
(Every Delphi project has an Application variable that holds an instance of
TApplication, TWebApplication, or TServiceApplication.) The block can also contain
declarations of constants, types, variables, procedures, and functions; these
declarations must precede the statement part of the block.

Unit structure and syntax

A unit consists of types (including classes), constants, variables, and routines
(functions and procedures). Each unit is defined in its own unit (PAS) file.

A unit file begins with a unit heading, which is followed by the interface,
implementation, initialization, and finalization sections. The initialization and
finalization sections are optional. A skeleton unit file looks like this:

unit Unitl;
interface
uses { List of units goes here }
{ Interface section goes here }
implementation
uses { List of units goes here }
{ Implementation section goes here }

initialization
{ Initialization section goes here }

finalization
{ Finalization section goes here }

end.

The unit must conclude with the word end followed by a period.

The unit heading

The unit heading specifies the unit’s name. It consists of the reserved word unit,
followed by a valid identifier, followed by a semicolon. For Delphi applications, the
identifier must match the unit file name. Thus, the unit heading

unit MainForm;

would occur in a source file called MAINFORM.PAS, and the file containing the
compiled unit would be MAINFORM.DCU.

Unit names must be unique within a project. Even if their unit files are in different
directories, two units with the same name cannot be used in a single program.

Programs and units 3-3

Unit structure and syntax

The interface section

The interface section of a unit begins with the reserved word interface and continues
until the beginning of the implementation section. The interface section declares
constants, types, variables, procedures, and functions that are available to clients—
that is, to other units or programs that use the unit where they are declared. These
entities are called public because a client can access them as if they were declared in
the client itself.

The interface declaration of a procedure or function includes only the routine’s
heading. The block of the procedure or function follows in the implementation
section. Thus procedure and function declarations in the interface section work like
forward declarations, although the forward directive isn’t used.

The interface declaration for a class must include declarations for all class members.

The interface section can include its own uses clause, which must appear
immediately after the word interface. For information about the uses clause, see
“Unit references and the uses clause” on page 3-5.

The implementation section

The implementation section of a unit begins with the reserved word implementation
and continues until the beginning of the initialization section or, if there is no
initialization section, until the end of the unit. The implementation section defines
procedures and functions that are declared in the interface section. Within the
implementation section, these procedures and functions may be defined and called in
any order. You can omit parameter lists from public procedure and function
headings when you define them in the implementation section; but if you include a
parameter list, it must match the declaration in the interface section exactly.

In addition to definitions of public procedures and functions, the implementation
section can declare constants, types (including classes), variables, procedures, and
functions that are private to the unit—that is, inaccessible to clients.

The implementation section can include its own uses clause, which must appear
immediately after the word implementation. For information about the uses clause,
see “Unit references and the uses clause” on page 3-5.

The initialization section

The initialization section is optional. It begins with the reserved word initialization
and continues until the beginning of the finalization section or, if there is no
finalization section, until the end of the unit. The initialization section contains
statements that are executed, in the order in which they appear, on program start-up.
So, for example, if you have defined data structures that need to be initialized, you
can do this in the initialization section.

The initialization sections of units used by a client are executed in the order in which
the units appear in the client’s uses clause.

3-4 Object Pascal Language Guide

Unit references and the uses clause

The finalization section

The finalization section is optional and can appear only in units that have an
initialization section. The finalization section begins with the reserved word
finalization and continues until the end of the unit. It contains statements that are
executed when the main program terminates. Use the finalization section to free
resources that are allocated in the initialization section.

Finalization sections are executed in the opposite order from initializations. For
example, if your application initializes units A, B, and C, in that order, it will finalize
them in the order C, B, and A.

Once a unit’s initialization code starts to execute, the corresponding finalization
section is guaranteed to execute when the application shuts down. The finalization
section must therefore be able to handle incompletely initialized data, since, if a
runtime error occurs, the initialization code might not execute completely.

Unit references and the uses clause

A uses clause lists units used by the program, library, or unit in which the clause
appears. (For information about libraries, see Chapter 9, “Dynamic-link libraries and
packages.”) A uses clause can occur in

¢ the project file for a program or library,
¢ the interface section of a unit, and
¢ the implementation section of a unit.

Most project files contain a uses clause, as do the interface sections of most units. The
implementation section of a unit can contain its own uses clause as well.

The System unit is used automatically by every Delphi application and cannot be
listed explicitly in the uses clause. (System implements routines for file I/O, string
handling, floating point operations, dynamic memory allocation, and so forth.) Other
standard library units, such as SysUtils, must be included in the uses clause. In most
cases, Delphi places all necessary units in the uses clause when it generates and
maintains a source file.

For more information about the placement and content of the uses clause, see
“Multiple and indirect unit references” on page 3-6 and “Circular unit references” on
page 3-7.

The syntax of a uses clause

A uses clause consists of the reserved word uses, followed by one or more comma-
delimited unit names, followed by a semicolon. Examples:

uses Forms, Main;

uses Windows, Messages, SysUtils, Strings, Classes, Unit2, MyUnit;

Programs and units 3-5

Unit references and the uses clause

In the uses clause of a program or library, any unit name may be followed by the
reserved word in and the name of a source file, with or without a directory path, in
single quotation marks; directory paths can be absolute or relative. Examples:

uses Windows, Messages, SysUtils, Strings in 'C:\Classes\Strings.pas', Classes;

uses
Forms,
Main,
Extra in '..\EXTRA\EXTRA.PAS';

Include in ... after a unit name when you need to specify the unit’s source file. Since
the Delphi IDE expects unit names to match the names of the source files in which
they reside, there is usually no reason to do this. Using in is necessary only when the
location of the source file is unclear, for example when

* You have used a source file that is in a different directory from the project file, and
that directory is not in the compiler’s search path or Delphi’s Library search path.

* Different directories in the compiler’s search path have identically named units.

* You are compiling a console application from the command line, and you have
named a unit with an identifier that doesn’t match the name of its source file.

Delphi also relies on the in ... construction to determine which units are part of a
project. Only units that appear in a project (.DPR) file’s uses clause followed by in
and a file name are considered to be part of the project; other units in the uses clause
are used by the project without belonging to it. This distinction has no effect on
compilation, but it affects IDE tools like the Project Manager and Project Browser.

In the uses clause of a unit, you cannot use in to tell the compiler where to find a
source file. Every unit must be in the compiler’s search path, Delphi’s Library search
path, or the same directory as the unit that uses it. Moreover, unit names must match
the names of their source files.

Multiple and indirect unit references

The order in which units appear in the uses clause determines the order of their
initialization (see “The initialization section” on page 3-4) and affects the way
identifiers are located by the compiler. If two units declare a variable, constant, type,
procedure, or function with the same name, the compiler uses the one from the unit
listed last in the uses clause. (To access the identifier from the other unit, you would
have to add a qualifier: UnitName.Identifier.)

A uses clause need include only units used directly by the program or unit in which
the clause appears. That is, if unit A references constants, types, variables,
procedures, or functions that are declared in unit B, then A must use B explicitly. If B
in turn references identifiers from unit C, then A is indirectly dependent on C; in this
case, C needn’t be included in a uses clause in A, but the compiler must still be able to
find both B and C in order to process A.

3-6 Object Pascal Language Guide

Unit references and the uses clause

The example below illustrates indirect dependency.

program Prog;
uses Unit2;
const a = b;

unit Unit2;
interface

uses Unitl;
const b = c;

unit Unitl;
interface
const ¢ = 1;

In this example, Prog depends directly on Unit2, which depends directly on Unit1.
Hence Prog is indirectly dependent on Unitl. Because Unitl does not appear in Prog’s
uses clause, identifiers declared in Unit1 are not available to Prog.

To compile a client module, the compiler needs to locate all units that the client
depends on, directly or indirectly. Unless the source code for these units has
changed, however, the compiler needs only their .DCU files, not their source (PAS)
files.

When changes are made in the interface section of a unit, other units that depend on
it must be recompiled. But when changes are made only in the implementation or
other sections of a unit, dependent units don’t have to be recompiled. The compiler
tracks these dependencies automatically and recompiles units only when necessary.

Circular unit references

When units reference each other directly or indirectly, the units are said to be
mutually dependent. Mutual dependencies are allowed as long as there are no
circular paths connecting the uses clause of one interface section to the uses clause of
another. In other words, starting from the interface section of a unit, it must never be
possible to return to that unit by following references through interface sections of
other units. For a pattern of mutual dependencies to be valid, each circular reference
path must lead through the uses clause of at least one implementation section.

In the simplest case of two mutually dependent units, this means that the units
cannot list each other in their interface uses clauses. So the following example leads
to a compilation error:

unit Unitl;
interface
uses Unit2;

unit Unit2;
interface
uses Unitl;

Programs and units 3-7

Unit references and the uses clause

However, the two units can legally reference each other if one of the references is
moved to the implementation section:

unit Unitl;
interface
uses Unit2;

unit Unit2;
interface

implementation
uses Unitl;

To reduce the chance of circular references, it’s a good idea to list units in the
implementation uses clause whenever possible. Only when identifiers from another

unit are used in the interface section is it necessary to list that unit in the interface
uses clause.

3-8 Object Pascal Language Guide

Syntactic elements

Object Pascal uses the ASCII character set, including the letters A through Z and a
through z, the digits 0 through 9, and other standard characters. It is not
case-sensitive. The space character (ASCII 32) and the control characters (ASCII 0
through 31—including ASCII 13, the return or end-of-line character) are called blanks.

Fundamental syntactic elements, called tokens, combine to form expressions,
declarations, and statements. A statement describes an algorithmic action that can be
executed within a program. An expression is a syntactic unit that occurs within a
statement and denotes a value. A declaration defines an identifier (such as the name of
a function or variable) that can be used in expressions and statements, and, where
appropriate, allocates memory for the identifier.

Fundamental syntactic elements

On the simplest level, a program is a sequence of tokens delimited by separators. A
token is the smallest meaningful unit of text in a program. A separator is either a blank
or a comment. Strictly speaking, it is not always necessary to place a separator
between two tokens; for example, the code fragment

Size:=20;Price:=10;
is perfectly legal. Convention and readability, however, dictate that we write this as

Size := 20;
Price := 10;

Tokens are categorized as special symbols, identifiers, reserved words, directives, numerals,
labels, and character strings. A separator can be part of a token only if the token is a
character string. Adjacent identifiers, reserved words, numerals, and labels must
have one or more separators between them.

Syntactic elements 4-1

Fundamental syntactic elements

Special symbols

Special symbols are non-alphanumeric characters, or pairs of such characters, that
have fixed meanings. The following single characters are special symbols.

#$ &'"()*+,-./l:;<=>@ []1~"{}
The following character pairs are also special symbols.
G CH D)L= <= > <>

The left bracket—[—is equivalent to the character pair of left parenthesis and
period—(.; the right bracket—]—is equivalent to the character pair of period and
right parenthesis—.) . The left-parenthesis—plus—asterisk and asterisk-plus-
right-parenthesis—(* *)—are equivalent to the left and right brace—{ }.

Notice that!, " (double quotation marks), %, ?, \, _ (underscore), | (pipe), and ~ (tilde)
are not special characters.

[dentifiers

Identifiers denote constants, variables, fields, types, properties, procedures,
functions, programs, units, libraries, and packages. An identifier can be of any
length, but only the first 255 characters are significant. An identifier must begin with
a letter or an underscore (_) and cannot contain spaces; letters, digits, and
underscores are allowed after the first character. Reserved words cannot be used as
identifiers.

Since Object Pascal is case-insensitive, an identifier like CalculateValue could be
written in any of these ways:

Calculatevalue
calculatevalue
calculatevalue
CALCULATEVALUE

Qualified identifiers

When you use an identifier that has been declared in more than one place, it is
sometimes necessary to qualify the identifier. The syntax for a qualified identifier is

identifiery .identifier,
where identifier| qualifies identifier,. For example, if two units each declare a variable
called CurrentValue, you can specify that you want to access the CurrentValue in Unit2
by writing

Unit2.CurrentValue
Qualifiers can be iterated. For example,

Forml.Buttonl.Click
calls the Click method in Button1 of Form1.

If you don’t qualify an identifier, its interpretation is determined by the rules of scope
described in “Blocks and scope” on page 4-27.

4-2 Object Pascal Language Guide

Reserved words

Fundamental syntactic elements

The following reserved words cannot be redefined or used as identifiers.

Table4.1 Reserved words
and downto in or string
array else inherited out then
as end initialization packed threadvar
asm except inline procedure to
begin exports interface program try
case file is property type
class finalization label raise unit
const finally library record until
constructor for mod repeat uses
destructor function nil resourcestring var
dispinterface goto not set while
div if object shl with
do implementation of shr Xor

In addition to the words in Table 4.1, private, protected, public, published, and
automated act as reserved words within object type declarations, but are otherwise

treated as directives. The words at and on also have special meanings.

Directives

Directives have special meanings in Object Pascal, but, unlike reserved words,
appear only in contexts where user-defined identifiers cannot occur. Hence—
although it is inadvisable to do so—you can define an identifier that looks exactly

like a directive.

Table4.2 Directives
absolute dynamic name protected resident
abstract export near public safecall
assembler external nodefault published stdcall
automated far overload read stored
cdecl forward override readonly virtual
contains implements package register write
default index pascal reintroduce writeonly
dispid message private requires

Syntactic elements

4-3

Fundamental syntactic elements

Numerals

Integer and real constants can be represented in decimal notation as sequences of
digits without commas or spaces, and prefixed with the + or — operator to indicate
sign. Values default to positive (so that, for example, 67258 is equivalent to +67258) and
must be within the range of the largest predefined real or integer type.

Numerals with decimal points or exponents denote reals, while other numerals denote
integers. When the character E or e occurs within a real, it means “times ten to the power
of”. For example, 7E-2 means 7 X 1072, and 12.25¢+6 and 12.25¢6 both mean 12.25 X 10°.

The dollar-sign prefix indicates a hexadecimal numeral—for example, $8F.
Hexadecimals must be within the range $00000000 to $FFFFFFFF. The sign of a
hexadecimal is determined by the leftmost (most significant) bit of its binary
representation.

For more information about real and integer types, see Chapter 5, “Data types,
variables, and constants.” For information about the data types of numerals, see
“True constants” on page 5-38.

Labels

A label is a sequence of no more than four digits—that is, a numeral between 0 and
9999. Leading zeros are not significant. Identifiers can also function as labels.

Labels are used in goto statements. For more information about goto statements and
labels, see “Goto statements” on page 4-18.

Character strings

A character string, also called a string literal or string constant, consists of a quoted
string, a control string, or a combination of quoted and control strings. Separators can
occur only within quoted strings.

A quoted string is a sequence of up to 255 characters from the extended ASCII
character set, written on one line and enclosed by apostrophes. A quoted string with
nothing between the apostrophes is a null string. Two sequential apostrophes in a
quoted string denote a single character, namely an apostrophe. For example,

'BORLAND' { BORLAND }
"You''ll see' { You'll see }
[{ 1 }

" { null string }
v { a space }

A control string is a sequence of one or more control characters, each of which consists
of the # symbol followed by an unsigned integer constant from 0 to 255 (decimal or
hexadecimal) and denotes the corresponding ASCII character. The control string

#894111#117
is equivalent to the quoted string

'You'

4-4 Object Pascal Language Guide

Comments and compiler directives

You can combine quoted strings with control strings to form larger character strings.

For example, you could use
'Line 1'#13#10'Line 2'

to put a carriage-return-line-feed between “Line 1” and “Line 2”. However, you
cannot concatenate two quoted strings in this way, since a pair of sequential
apostrophes is interpreted as a single character. (To concatenate quoted strings, use
the + operator described in “String operators” on page 4-9, or simply combine them
into a single quoted string.)

A character string’s length is the number of characters in the string. A character string
of any length is compatible with any string type, and with the PChar type when
extended syntax is enabled ({$X+}). A character string of length 1 is compatible with
any character type, and a character string of length n 2 1 is compatible with packed

arrays of n characters. For more information about string types, see Chapter 5, “Data
types, variables, and constants.”

Comments and compiler directives

Comments are ignored by the compiler, except when they function as separators
(delimiting adjacent tokens) or compiler directives.

There are several ways to construct comments:

{ Text between a left brace and a right brace constitutes a comment. }

(* Text between a left-parenthesis-plus-asterisk and an
asterisk-plus-right-parenthesis also constitutes a comment. *)

// BAny text between a double-slash and the end of the line constitutes a comment.

A comment that contains a dollar sign ($) immediately after the opening { or (*is a
compiler directive. For example,

{SWARNINGS OFF}

tells the compiler not to generate warning messages.

Expressions
An expression is a construction that returns a value. For example,
X { variable }
@x { address of a variable }
15 { integer constant }
InterestRate { variable }
Calc(X,Y) { function call }
X *y { product of X and Y }
Z/ (1 -17) { quotient of Z and (1 - Z) }
X =1.5 { Boolean }
C in Rangel { Boolean }
not Done { negation of a Boolean }
['a','b",'c"] { set }
Char (48) { value typecast }

Syntactic elements

4-5

Expressions
The simplest expressions are variables and constants (described in Chapter 5, “Data

types, variables, and constants”). More complex expressions are built from simpler
ones using operators, function calls, set constructors, indexes, and typecasts.

Operators

Operators behave like predefined functions that are part of the Object Pascal
language. For example, the expression (X + Y) is built from the variables X and Y—
called operands—with the + operator; when X and Y represent integers or reals, (X + Y)
returns their sum. Operators include @, not, #, ¥, /, div, mod, and, shl, shr, as, +, -, or,
xor, =, >, <, <>, <=, >=, in, and is.

The operators @, not, and » are unary (taking one operand). All other operators are
binary (taking two operands), except that + and - can function as either unary or
binary. A unary operator always precedes its operand (for example, -B), except for #,
which follows its operand (for example, P*). A binary operator is placed between its
operands (for example, & = 7).

Some operators behave differently depending on the type of data passed to them. For
example, not performs bitwise negation on an integer operand and logical negation
on a Boolean operand. Such operators appear below under multiple categories.

Except for #, is, and in, all operators can take operands of type Variant. For details,
see “Variant types” on page 5-29.

The sections that follow assume some familiarity with Object Pascal data types. For
information about data types, see Chapter 5, “Data types, variables, and constants.”

For information about operator precedence in complex expressions, see “Operator
precedence rules” on page 4-12.

Arithmetic operators

Arithmetic operators, which take real or integer operands, include +, -, *, /, div, and
mod.

Table 4.3 Binary arithmetic operators

Operator Operation Operand types Result type Example

+ addition integer, real integer, real X+ Y

- subtraction integer, real integer, real Result - 1

* multiplication integer, real integer, real P * InterestRate

/ real division integer, real real X /2

div integer division integer integer Total div UnitSize
mod remainder integer integer Y mod 6

Table 44 Unary arithmetic operators

Operator Operation Operand type Result type Example
+ sign identity integer, real integer, real +7
- sign negation integer, real integer, real -X

4-6 Object Pascal Language Guide

Expressions

The following rules apply to arithmetic operators.

¢ The value of x/y is of type Extended, regardless of the types of x and y. For other
arithmetic operators, the result is of type Extended whenever at least one operand
is a real; otherwise, the result is of type Int64 when at least one operand is of type
Int64; otherwise, the result is of type Integer. If an operand’s type is a subrange of
an integer type, it is treated as if it were of the integer type.

* The value of x div y is the value of x/y rounded in the direction of zero to the
nearest integer.

¢ The mod operator returns the remainder obtained by dividing its operands. In
other words, x mod y = x — (x divy) * y.

¢ A runtime error occurs when y is zero in an expression of the form x/y, x div y, or
xmod y.

Boolean operators

The Boolean operators not, and, or, and xor take operands of any Boolean type and
return a value of type Boolean.

Table 45 Boolean operators

Operator Operation Operand types Result type Example

not negation Boolean Boolean not (C in MySet)
and conjunction Boolean Boolean Done and (Total > 0)
or disjunction Boolean Boolean Aor3B

xor exclusive disjunction Boolean Boolean A xor B

These operations are governed by standard rules of Boolean logic. For example, an
expression of the form x and y is True if and only if both x and y are True.

Complete versus short-circuit Boolean evaluation

The Delphi compiler supports two modes of evaluation for the and and or operators:
complete evaluation and short-circuit (partial) evaluation. Complete evaluation means
that each conjunct or disjunct is evaluated, even when the result of the entire
expression is already determined. Short-circuit evaluation means strict left-to-right
evaluation that stops as soon as the result of the entire expression is determined. For
example, if the expression 2 and B is evaluated under short-circuit mode when A is
False, the compiler won't evaluate B; it knows that the entire expression is False as
soon as it evaluates A.

Short-circuit evaluation is usually preferable because it guarantees minimum
execution time and, in most cases, minimum code size. Complete evaluation is
sometimes convenient when one operand is a function with side effects that alter the
execution of the program.

Syntactic elements 4-7

Expressions

Short-circuit evaluation also allows the use of constructions that might otherwise
result in illegal runtime operations. For example, the following code iterates through
the string S, up to the first comma.

while (I <= Length(S)) and (S[I] <> ',') do
begin

Inc(I);
end;

In a case where S has no commas, the last iteration increments I to a value which is
greater than the length of S. When the while condition is next tested, complete
evaluation results in an attempt to read S[I], which could cause a runtime error.
Under short-circuit evaluation, in contrast, the second part of the while condition—
(S[I] <> ',')—is not evaluated after the first part fails.

Use the $B compiler directive to control evaluation mode. The default state is {$B-},
which enables short-circuit evaluation. To enable complete evaluation locally, add
the {$B+} directive to your code. You can also switch to complete evaluation on a
project-wide basis by selecting Complete Boolean Evaluation in the Compiler
Options dialog.

Logical (bitwise) operators

The following logical operators perform bitwise manipulation on integer operands.
For example, if the value stored in X (in binary) is 001101 and the value stored in Y is
100001, the statement

Z = XorY;
assigns the value 101101 to Z.

Table 4.6 Logical (bitwise) operators

Operator Operation Operand types Result type Examples
not bitwise negation integer integer not X
and bitwise and integer integer X and Y
or bitwise or integer integer X or Y
xor bitwise xor integer integer X xor Y
shl bitwise shift left integer integer X shl 2
shr bitwise shift right integer integer Y shl I

The following rules apply to bitwise operators.
* The result of a not operation is of the same type as the operand.

¢ If the operands of an and, or, or xor operation are both integers, the result is of the
predefined integer type with the smallest range that includes all possible values of
both types.

* The operations x shl y and x shr y shift the value of x to the left or right by y bits,
which is equivalent to multiplying or dividing x by 2¥; the result is of the same
type as x. For example, if N stores the value 01101 (decimal 13), then N shl 1
returns 11010 (decimal 26).

4-8 Object Pascal Language Guide

Expressions

String operators

The relational operators =, <>, <, >, <=, and >= all take string operands (see
“Relational operators” on page 4-10). The + operator concatenates two strings.

Table 4.7 String operators
Operator Operation Operand types Result type Example

+ concatenation string, packed string, character string S+

The following rules apply to string concatenation.

* The operands for + can be strings, packed strings (packed arrays of type Char), or
characters. However, if one operand is of type WideChar, the other operand must
be a long string.

* The result of a + operation is compatible with any string type. However, if the
operands are both short strings or characters, and their combined length is greater
than 255, the result is truncated to the first 255 characters.

Pointer operators

The relational operators <, >, <=, and >= can take operands of type PChar (see
“Relational operators” on page 4-10). The following operators also take pointers as
operands. For more information about pointers, see “Pointers and pointer types” on
page 5-24.

Table 48 Character-pointer operators

Operator ~ Operation Operand types Result type Example
+ pointer addition character pointer, integer character pointer P+1

- pointer subtraction character pointer, integer character pointer, integer ? -

A pointer dereference pointer base type of pointer P

= equality pointer Boolean P=0
<> inequality pointer Boolean P <0

The » operator dereferences a pointer. Its operand can be a pointer of any type except
the generic Pointer, which must be typecast before dereferencing.

P =Qis Truejustin case P and Q point to the same address; otherwise, P <> Q is True.

You can use the + and - operators to increment and decrement the offset of a
character pointer. You can also use — to calculate the difference between the offsets of
two character pointers. The following rules apply.

e If Iis an integer and P is a character pointer, then P + I adds I to the address given
by P; that is, it returns a pointer to the address I characters after P. (The expression
I + P is equivalent to P + I.) P — I subtracts I from the address given by P; that is, it
returns a pointer to the address I characters before P.

¢ If Pand Q are both character pointers, then P — Q computes the difference between
the address given by P (the higher address) and the address given by Q (the lower
address); that is, it returns an integer denoting the number of characters between P
and Q. P + Q is not defined.

Syntactic elements 4-9

Expressions

Set operators
The following operators take sets as operands.

Table 4.9

Operator

<>

in

Set operators

Operation
union
difference
intersection
subset
superset
equality
inequality
membership

Operand types Result type
set set

set set

set set

set Boolean

set Boolean

set Boolean

set Boolean
ordinal, set Boolean

Example

Setl + Set2

S-T
S*T

Q <= MySet

S1 >= 32

52 = MySet
MySet <> S1

Ain Setl

The following rules apply to +, —, and *.

* Anordinal Oisin X + Yif and only if Oisin X or Y (or both). O is in X - Y if and
only if O isin X but notin Y. Oisin X * Y'if and only if O is in both X and Y.

* The result of a +, —, or * operation is of the type set of A..B, where A is the smallest
ordinal value in the result set and B is the largest.

The following rules apply to <=, >=, =, <>, and in.

* X <=Yis Truejustin case every member of X is a member of Y; Z >= W is
equivalent to W <= Z. U = V is True just in case U and V contain exactly the same
members; otherwise, U <> V is True.

* For an ordinal O and aset S, O in S is True just in case O is a member of S.

Relational operators
Relational operators are used to compare two operands. The operators =, <>, <=, and
>= also apply to sets (see “Set operators” on page 4-10); = and <> also apply to

pointers (see “Pointer operators” on page 4-9).

Table 4.10 Relational operators

Operator

<>

Operation
equality

inequality

less-than
greater-than

less-than-or-
equal-to

greater-than-
or-equal-to

Operand types

simple, class, class reference, interface, string,

packed string

simple, class, class reference, interface, string,

packed string

simple, string, packed string, PChar
simple, string, packed string, PChar
simple, string, packed string, PChar

simple, string, packed string, PChar

Result
type

Boolean
Boolean

Boolean
Boolean

Boolean

Boolean

Example

I = Max
X <> Y

X <Y
Len > 0
Cnt <=1

I>=1

4-10 Object Pascal Language Guide

Expressions

For most simple types, comparison is straightforward. For example, I =] is True just
in case I and | have the same value, and I <> | is True otherwise. The following rules
apply to relational operators.

* Operands must be of compatible types, except that a real and an integer can be
compared.

* Strings are compared according to the ordering of the extended ASCII character
set. Character types are treated as strings of length 1.

* Two packed strings must have the same number of components to be compared.
When a packed string with n components is compared to a string, the packed
string is treated as a string of length 7.

* The operators <, >, <=, and >= apply to PChar operands only if the two pointers
point within the same character array.

* The operators = and <> can take operands of class and class-reference types. With
operands of a class type, = and <> are evaluated according the rules that apply to
pointers: C = D is True just in case C and D point to the same instance object, and C
<> D is True otherwise. With operands of a class-reference type, C = D is True just
in case C and D denote the same class, and C <> D is True otherwise. For more
information about classes, see Chapter 7, “Classes and objects.”

Class operators

The operators as and is take classes and instance objects as operands; as operates on
interfaces as well. For more information, see Chapter 7, “Classes and objects” and
Chapter 10, “Object interfaces.”

The relational operators = and <> also operate on classes. See “Relational operators”
on page 4-10.

The @ operator

The @ operator returns the address of a variable, or of a function, procedure, or
method; that is, @ constructs a pointer to its operand. For more information about
pointers, see “Pointers and pointer types” on page 5-24. The following rules apply to @.

e If X is a variable, @X returns the address of X. (Special rules apply when X is a
procedural variable; see “Procedural types in statements and expressions” on
page 5-28.) The type of @X is Pointer if the default {$T-} compiler directive is in
effect. In the {$T+} state, @X is of type AT, where T is the type of X.

e If Fis a routine (a function or procedure), @F returns F’s entry point. The type of
@F is always Pointer.

* When @ is applied to a method defined in a class, the method identifier must be
qualified with the class name. For example,

@TMyClass.DoSomething

points to the DoSomething method of TMyClass. For more information about
classes and methods, see Chapter 7, “Classes and objects.”

Syntactic elements 4-11

Expressions

Operator precedence rules

In complex expressions, rules of precedence determine the order in which operations
are performed.

Table 4.11 Precedence of operators

Operators Precedence

@, not first (highest)
*,1,div, mod, and, shl, shr, as second

+, —, OF, XOr third
=,<>,<,>,<=,>=,1n, is fourth (lowest)

An operator with higher precedence is evaluated before an operator with lower
precedence, while operators of equal precedence associate to the left. Hence the
expression

X+Y*1Z

multiplies Y times Z, then adds X to the result; * is performed first, because is has a
higher precedence than +. But

X-Y+ 17

first subtracts Y from X, then adds Z to the result; — and + have the same precedence,
so the operation on the left is performed first.

You can use parentheses to override these precedence rules. An expression within
parentheses is evaluated first, then treated as a single operand. For example,

(X +7Y) *7
multiplies Z times the sum of X and Y.

Parentheses are sometimes needed in situations where, at first glance, they seem not
to be. For example, consider the expression

X=YorX=2
The intended interpretation of this is obviously
(X =Y) or (X = 2)

Without parentheses, however, the compiler follows operator precedence rules and
reads it as

(X=(YorX)) =12
—which results in a compilation error unless Z is Boolean.

Parentheses often make code easier to write and to read, even when they are, strictly
speaking, superfluous. Thus the first example above could be written as

X+ (Y *2)

Here the parentheses are unnecessary (to the compiler), but they spare both
programmer and reader from having to think about operator precedence.

4-12 Object Pascal Language Guide

Expressions

Function calls

Because functions return a value, function calls are expressions. For example, if you've
defined a function called Calc that takes two integer arguments and returns an integer,
then the function call Calc (24, 47) is an integer expression. If I and | are integer variables,
thenI + Calc(J, 8) is also an integer expression. Examples of function calls include

Sum (A, 63)

Maximum (147, J)

Sin(X + V)

Eof (F)

Volume (Radius, Height)
GetValue

TSomeObject . SomeMethod (I,J);

For more information about functions, see Chapter 6, “Procedures and functions.”

Set constructors

A set constructor denotes a set-type value. For example,
[5, 6, 7, 8]

denotes the set whose members are 5, 6, 7, and 8. The set constructor
[5..8]

could also denote the same set.

The syntax for a set constructor is
[itemq, ..., item,]

where each item is either an expression denoting an ordinal of the set’s base type or a
pair of such expressions with two dots (..) in between. When an item has the form x..y,
it is shorthand for all the ordinals in the range from x to y, inclusive; but if x is greater
than y, then x..y denotes nothing and [x..y] is the empty set. The set constructor []

denotes the empty set, while [x] denotes the set whose only member is the value of x.

Examples of set constructors:

[red, green, MyColor]
[1, 5, 10..K mod 12, 23]
['A'..'Z', 'a'..'z", Chr(Digit + 48)]

For more information about sets, see “Sets” on page 5-16.

Indexes

Strings, arrays, array properties, and pointers to strings or arrays can be indexed. For
example, if FileName is a string variable, the expression FileName[3] returns the third
character in the string denoted by FileName, while FileName[I + 1] returns the
character immediately after the one indexed by I. For information about strings, see
“String types” on page 5-9. For information about arrays and array properties, see
“Arrays” on page 5-16 and “Array properties” on page 7-18.

Syntactic elements 4-13

Expressions

Typecasts

It is sometimes useful to treat an expression as if it belonged to different type. A
typecast allows you to do this by, in effect, temporarily changing an expression’s
type. For example, Integer('2') casts the character A as an integer.

The syntax for a typecast is
typeldentifier (expression)

If the expression is a variable, the result is called a variable typecast; otherwise, the
result is a value typecast. While their syntax is the same, different rules apply to the
two kinds of typecast.

Value typecasts

In a value typecast, the type identifier and the cast expression must both be ordinal
types or both be pointer types. Examples of value typecasts include

Integer ('A")
Char (48)
Boolean(0)
Color(2)

Longint (@Buffer)

The resulting value is obtained by converting the expression in parentheses. This
may involve truncation or extension if the size of the specified type differs from that
of the expression. The expression’s sign is always preserved.

The statement
T := Integer('A');
assigns the value of Integer('A')—that is, 65—to the variable I.

A value typecast cannot be followed by qualifiers and cannot appear on the left side
of an assignment statement.

Variable typecasts

You can cast any variable to any type, provided their sizes are the same and you do
not mix integers with reals. (To convert numeric types, rely on standard functions
like Int and Trunc.) Examples of variable typecasts include

Char (I)
Boolean (Count)
TSomeDefinedType (MyVariable)

Variable typecasts can appear on either side of an assignment statement. Thus
var MyChar: char;
Shortint (MyChar) := 122;

assigns the character z (ASCII 122) to MyChar.

4-14 Object Pascal Language Guide

Expressions

You can cast variables to a procedural type. For example, given the declarations

type Func = function(X: Integer): Integer;
var

F: Func;

P: Pointer;

N: Integer;

you can make the following assignments.

F := Func(P); { Assign procedural value in P to F }
Func(P) := F; { Assign procedural value in F to P }
@F := P; { Assign pointer value in P to F }

P := @F; { Assign pointer value in F to P }

N := F(N); { Call function via F }

N := Func(P) (N); { Call function via P }

Variable typecasts can also be followed by qualifiers, as illustrated in the following
example.

type
TByteRec = record
Lo, Hi: Byte;
end;

TWordRec = record
Low, High: Word;

end;
PByte = "Byte;

var
B: Byte;
W: Word;
L: Longint;
P: Pointer;

begin
W o= $1234;
B := TByteRec(W).Lo;
TByteRec (W) .Hi := 0;
L := $01234567;
W := TWordRec (L) .Low;
B := TByteRec(TWordRec (L) .Low) .Hi;
B := PByte(L)";

end;

In this example, TByteRec is used to access the low- and high-order bytes of a word,
and TWordRec to access the low- and high-order words of a long integer. You could
call the predefined functions Lo and Hi for the same purpose, but a variable typecast
has the advantage that it can be used on the left side of an assignment statement.

For information about typecasting pointers, see “Pointers and pointer types” on
page 5-24. For information about casting class and interface types, see “The as
operator” on page 7-24 and “Interface typecasts” on page 9.

Syntactic elements 4-15

Declarations and statements

Declarations and statements

Aside from the uses clause (and reserved words like implementation that demarcate
parts of a unit), a program consists entirely of declarations and statements, which are
organized into blocks.

Declarations

The names of variables, constants, types, fields, properties, procedures, functions,
programs, units, libraries, and packages are called identifiers. (Numeric constants like
26057 are not identifiers.) Identifiers must be declared before you can use them; the
only exceptions are a few predefined types, routines, and constants that the compiler
understands automatically, the variable Result when it occurs inside a function block,
and the variable Self when it occurs inside a method implementation.

A declaration defines an identifier and, where appropriate, allocates memory for it.
For example,

var Size: Extended;
declares a variable called Size that holds an Extended (real) value, while
function DoThis(X, Y: string): Integer;

declares a function called DoThis that takes two strings as arguments and returns an
integer. Each declaration ends with a semicolon. When you declare several variables,
constants, types, or labels at the same time, you need only write the appropriate
reserved word once:

var
Size: Extended;
Quantity: Integer;
Description: string;

The syntax and placement of a declaration depend on the kind of identifier you are
defining. In general, declarations can occur only at the beginning of a block or at the
beginning of the interface or implementation section of a unit (after the uses clause).
Specific conventions for declaring variables, constants, types, functions, and so forth
are explained in the chapters on those topics.

Statements

Statements define algorithmic actions within a program. Simple statements—like
assignments and procedure calls—can combine to form loops, conditional
statements, and other structured statements.

Multiple statements within a block, and in the initialization or finalization section of
a unit, are separated by semicolons.

Simple statements

A simple statement doesn’t contain any other statements. Simple statements include
assignments, calls to procedures and functions, and goto jumps.

4-16 Object Pascal Language Guide

Declarations and statements

Assignment statements
An assignment statement has the form

variable := expression

where variable is any variable reference—including a variable, variable typecast,
dereferenced pointer, or component of a structured variable—and expression is any
assignment-compatible expression. (Within a function block, variable can be replaced
with the name of the function being defined. See Chapter 6, “Procedures and
functions.”) The := symbol is sometimes called the assignment operator.

An assignment statement replaces the current value of variable with the value of
expression. For example,

I:=3;

assigns the value 3 to the variable I. The variable reference on the left side of the
assignment can appear in the expression on the right. For example,

I:=1+1;
increments the value of I. Other assignment statements include

X :=Y + Z;

Done := (I »>= 1) and (I < 100);
Huel := [Blue, Succ(CH
= Sqr(J) - * K;
Shortlnt(MyChar) 1= 122;
TByteRec (W) .Hi := 0;
MyString[I] := 'A';

SomeArray [I + 1] := P*;
TMyObject .SomeProperty := True;

Procedure and function calls

A procedure call consists of the name of a procedure (with or without qualifiers),
followed by a parameter list (if required). Examples include

PrintHeading;

Transpose (A, N, M);
Find(Smith, William);
Writeln('Hello world!');
DoSomething () ;
Unitl.SomeProcedure;
TMyObject . SomeMethod (X, Y) ;

Function calls, like calls to procedures, can be treated as statements in their own right:
MyFunction(X);
When you use a function call in this way, its return value is discarded.

For more information about procedures and functions, see Chapter 6, “Procedures
and functions.”

Syntactic elements 4-17

Declarations and statements

Goto statements
A goto statement, which has the form
goto label

transfers program execution to the statement marked by the specified label. To mark
a statement, you must first declare the label. Then precede the statement you want to
mark with the label and a colon:

label: statement
Declare labels like this:
label label;
You can declare several labels at once:
label labelq, ..., label;
A label can be any valid identifier or any numeral between 0 and 9999.

The label declaration, marked statement, and goto statement must belong to the same
block. (See “Blocks and scope” on page 4-27.) Hence it is not possible to jump into or
out of a procedure or function. Do not mark more than one statement in a block with
the same label.

For example,
label StartHere;
StartHere: Beep;
goto StartHere;
creates an infinite loop that calls the Beep procedure repeatedly.

The goto statement is generally discouraged in structured programming. It is,
however, sometimes used as a way of exiting from nested loops, as in the following
example.

procedure FindFirstAnswer;
var X, Y, Z, Count: Integer;
label FoundAnAnswer;

begin
Count := SomeConstant;
for X := 1 to Count do
for ¥ := 1 to Count do
for 7 := 1 to Count do
if ... { some condition holds on X, Y, and Z } then

goto FoundAnAnswer;

¢ {code to execute if no answer is found }
Exit;

FoundAnAnswer:

: { code to execute when an answer is found }
end;

4-18 Object Pascal Language Guide

Declarations and statements

Notice that we are using goto to jump out of a nested loop. Never jump into a loop or
other structured statement, since this can have unpredictable effects.

Structured statements

Structured statements are built from other statements. Use a structured statement
when you want to execute other statements sequentially, conditionally, or
repeatedly.

* A compound or with statement simply executes a sequence of constituent
statements.

¢ A conditional statement—that is, an if or case statement—executes at most one of
its constituents, depending on specified criteria.

* Loop statements—including repeat, while, and for loops—execute a sequence of
constituent statements repeatedly.

* A special group of statements—including raise, try...except, and try...finally
constructions—create and handle exceptions. For information about exception
generation and handling, see “Exceptions” on page 7-25.

Compound statements

A compound statement is a sequence of other (simple or structured) statements to be
executed in the order in which they are written. The compound statement is
bracketed by the reserved words begin and end, and its constituent statements are
separated by semicolons. For example:

begin
Z
X :
Yo
end;

X;

Z;

The last semicolon before end is optional. So we could have written this as

begin
Z = X;
X :=Y;
Y =17
end;

Compound statements are essential in contexts where Object Pascal syntax requires a
single statement. In addition to program, function, and procedure blocks, they occur
within other structured statements, such as conditionals or loops. For example:
begin
I := SomeConstant;

while I > 0 do
begin
I:=1-1;

end;
end;

Syntactic elements 4-19

Declarations and statements

You can write a compound statement that contains only a single constituent
statement; like parentheses in a complex term, begin and end sometimes serve to
disambiguate and to improve readability. You can also use an empty compound
statement to create a block that does nothing:

begin
end;

With statements

A with statement is a shorthand for referencing the fields of a record or the fields,
properties, and methods of an object. The syntax of a with statement is

with obj do statement
or
with objy, ..., obj, do statement

where obj is a variable reference denoting an object or record, and statement is any
simple or structured statement. Within statement, you can refer to fields, properties,
and methods of obj using their identifiers alone—without qualifiers.

For example, given the declarations

type TDate = record
Day: Integer;
Month: Integer;
Year: Integer;
end;

var OrderDate: TDate;
you could write the following with statement.

with OrderDate do
if Month = 12 then

begin

Month := 1;

Year := Year + 1;
end
else

Month := Month + 1;
This is equivalent to

if OrderDate.Month = 12 then
begin
OrderDate.Month := 1;
OrderDate.Year := OrderDate.Year + 1;
end
else
OrderDate.Month := OrderDate.Month + 1;

If the interpretation of obj involves indexing arrays or dereferencing pointers, these
actions are performed once, before statement is executed. This makes with statements
efficient as well as concise. It also means that assignments to a variable within

4-20 Object Pascal Language Guide

Declarations and statements

statement cannot affect the interpretation of obj during the current execution of the
with statement.

Each variable reference or method name in a with statement is interpreted, if
possible, as a member of the specified object or record. If there is another variable or
method of the same name that you want to access from the with statement, you need
to prepend it with a qualifier, as in the following example.

with OrderDate do
begin
Year := Unitl.Year
end;

When multiple objects or records appear after with, the entire statement is treated
like a series of nested with statements. Thus

with objy, objp, ..., obj, do statement
is equivalent to
with Obj] do
with Objz do
with obj, do
statement

In this case, each variable reference or method name in staterment is interpreted, if
possible, as a member of obj,; otherwise it is interpreted, if possible, as a member of
obj,,_1; and so forth. The same rule applies to interpreting the objs themselves, so that,
for instance, if obj,, is a member of both obj; and objj, it is interpreted as obj,.obj,.

If statements

There are two forms of if statement: if...then and the if...then...else. The syntax of an
if...then statement is

if expression then statement

where expression returns a Boolean value. If expression is True, then statement is
executed; otherwise it is not. For example,

if J <> 0 then Result := I/J;
The syntax of an if...then...else statement is
if expression then statement; else statement,

where expression returns a Boolean value. If expression is True, then statement; is
executed; otherwise statement, is executed. For example,

if J = 0 then
Exit

else
Result := I/J;

Syntactic elements 4-21

Declarations and statements

The then and else clauses contain one statement each, but it can be a structured
statement. For example,

if J <> 0 then

begin
Result := I/J;
Count := Count + 1;
end

else if Count = Last then
Done := True

else
Exit;

Notice that there is never a semicolon between the then clause and the word else.
You can place a semicolon after an entire if statement to separate it from the next
statement in its block, but the then and else clauses require nothing more than a
space or carriage return between them. Placing a semicolon immediately before else
(in an if statement) is a common programming error.

A special difficulty arises in connection with nested if statements. The problem arises
because some if statements have else clauses while others do not, but the syntax for
the two kinds of statement is otherwise the same. In a series of nested conditionals
where there are fewer else clauses than if statements, it may not seem clear which
else clauses are bound to which ifs. Consider a statement of the form

if expression| then if expression, then statement; else statement,;
There would appear to be two ways to parse this:
if expressiony then [if expression, then statement; else statement, |;
if expressiony then [if expression, then statement|]| else statement,;
The compiler always parses in the first way. That is, in real code, the statement

if ... { expressionl } then
if ... { expression2 } then
. { statementl }
else
. { statement2 } ;

is equivalent to

if ... { expressionl } then
begin
if ... { expression2 } then
. { statementl }
else

. { statement?2 }
end;

The rule is that nested conditionals are parsed starting from the innermost
conditional, with each else bound to the nearest available if on its left. To force the

4-22 Object Pascal Language Guide

Declarations and statements

compiler to read our example in the second way, you would have to write it
explicitly as

if ... { expressionl } then
begin
if ... { expression2 } then
. { statementl }
end
else

... { statement2 } ;

Case statements

The case statement provides a readable alternative to complex nested if conditionals.
A case statement has the form

case selectorExpression of
caseListy: statement;

éaseListn: statement, ;
end

where selectorExpression is any expression of an ordinal type (string types are invalid)
and each caseList is one of the following:

* A numeral, declared constant, or other expression that the compiler can evaluate
without executing your program. It must be of an ordinal type compatible with
selectorExpression. Thus 7, True, 4 + 5 * 3, 'A", and Integer('A') can all be used as
caseLists, but variables and most function calls cannot. (A few built-in functions
like Hi and Lo can occur in a caseList. See “Constant expressions” on page 5-39.)

¢ A subrange having the form First..Last, where First and Last both satisfy the
criterion above and First is less than or equal to Last.

¢ A list having the form item,, ..., item,, where each item satisfies one of the criteria
above.

Each value represented by a caseList must be unique in the case statement; subranges
and lists cannot overlap. A case statement can have a final else clause:

case selectorExpression of
caseList|: statementy;

caseList : statement,;
else

statement;
end

When a case statement is executed, at most one of its constituent statements is
executed. Whichever caseList has a value equal to that of selectorExpression determines
the statement to be used. If none of the caseLists has the same value as
selectorExpression, then the statement in the else clause (if there is one) is executed.

Syntactic elements 4-23

Declarations and statements

The case statement

case I of

1..5: Caption := 'Low';

6..9: Caption := 'High';

0, 10..99: Caption := 'Out of range';
else

Caption := '';
end;

is equivalent to the nested conditional

if T in [1..5] then
Caption := 'Low'
else if T in [6..10] then
Caption := 'High'
else if (I = 0) or (I in [10..99]) then
Caption := 'Out of range'
else
Caption := '';

Other examples of case statements:

case MyColor of

Red: X := 1;

Green: X := 2;

Blue: X := 3;

Yellow, Orange, Black: X := 0;
end;

case Selection of

Done: Forml.Close;

Compute: CalculateTotal (UnitCost, Quantity);
else

Beep;
end;

Control loops

Loops allow you to execute a sequence of statements repeatedly, using a control
condition or variable to determine when the execution stops. Object Pascal has three
kinds of control loop: repeat statements, while statements, and for statements.

You can use the standard Break and Continue procedures to control the flow of a
repeat, while, or for statement. Break terminates the statement in which it occurs,
while Continue begins executing the next iteration of the sequence. For more
information about these procedures, see the online Help.

Repeat statements
The syntax of a repeat statement is

repeat statementy; ...; statement,; until expression

where expression returns a Boolean value. (The last semicolon before until is
optional.) The repeat statement executes its sequence of constituent statements
continually, testing expression after each iteration. When expression returns True, the

4-24 Object Pascal Language Guide

Declarations and statements

repeat statement terminates. The sequence is always executed at least once because
expression is not evaluated until after the first iteration.

Examples of repeat statements include

repeat
K := I mod J;
I:=4J;
J := K;
until J = 0;
repeat
Write('Enter a value (0..9): ');
Readln(I);
until (I >= 0) and (I <= 9);

While statements

A while statement is similar to a repeat statement, except that the control condition is
evaluated before the first execution of the statement sequence. Hence, if the condition
is false, the statement sequence is never executed.

The syntax of a while statement is
while expression do statement

where expression returns a Boolean value and statement can be a compound statement.
The while statement executes its constituent statement repeatedly, testing expression
before each iteration. As long as expression returns True, execution continues.

Examples of while statements include
while DatalI] <> Xdo I :=1 + 1;
while I > 0 do

begin
if 0dd(I) then 7 := Z * X;
I :=1div 2;
X := Sqr(X);

end;

while not Eof (InputFile) do
begin
Readln(InputFile, Line);
Process (Line);
end;

For statements

A for statement, unlike a repeat or while statement, requires you to specify explicitly
the number of iterations you want the loop to go through. The syntax of a for
statement is

for counter := initialValue to finalValue do statement

or

for counter := initialValue downto finalValue do statement

Syntactic elements 4-25

Declarations and statements

where

* counter is a local variable (declared in the block containing the for statement) of
ordinal type, without any qualifiers.

e initialValue and finalValue are expressions that are assignment-compatible with
counter.

* statement is a simple or structured statement that does not change the value of counter.

The for statement assigns the value of initialValue to counter, then executes statement
repeatedly, incrementing or decrementing counter after each iteration. (The for...to
syntax increments counter, while the for...downto syntax decrements it.) When
counter returns the same value as finalValue, statement is executed once more and the
for statement terminates. In other words, statement is executed once for every value
in the range from initialValue to finalValue. If initialValue is equal to finalValue,
statement is executed exactly once. If initialValue is greater than finalValue in a for...to
statement, or less than finalValue in a for...downto statement, then staterment is never
executed. After the for statement terminates, the value of counter is undefined.

For purposes of controlling execution of the loop, the expressions initialValue and
finalValue are evaluated only once, before the loop begins. Hence the for...to
statement is almost, but not quite, equivalent to this while construction:

begin
counter := initialValue;
while counter <= finalValue do
begin
statement;
counter := Succ(counter);
end;
end

The difference between this construction and the for...to statement is that the while
loop re-evaluates finalValue before each iteration. This can result in noticeably slower
performance if finalValue is a complex expression, and it also means that changes to
the value of finalValue within statement can affect execution of the loop.

Examples of for statements:

for T := 2 to 63 do
if Data[I] > Max then
Max := Datal[I];

for I := ListBoxl.Items.Count - 1 downto 0 do
ListBoxl.Items[I] := UpperCase(ListBoxl.Items[I]);

for T := 1 to 10 do

for J := 1 to 10 do

begin
X :=0;
for X := 1 to 10 do

X := X + Matl[I, K] * Mat2[K, J];

Mat[I, J] := X;

end;

for C := Red to Blue do Check(C);

4-26 Object Pascal Language Guide

Blocks and scope

Blocks and scope

Declarations and statements are organized into blocks, which define local namespaces
(or scopes) for labels and identifiers. Blocks allow a single identifier, such as a variable
name, to have different meanings in different parts of a program. Each block is part
of the declaration of a program, function, or procedure; each program, function, or
procedure declaration has one block.

Blocks

A block consists of a series of declarations followed by a compound statement. All
declarations must occur together at the beginning of the block. So the form of a block is

declarations
begin

statements
end

The declarations section can include, in any order, declarations for variables, constants
(including resource strings), types, procedures, functions, and labels. In a program
block, the declarations section can also include one or more exports clauses (see
Chapter 9, “Dynamic-link libraries and packages”).

For example, in a function declaration like

function UpperCase(const S: string): string;
var

Ch: Char;

L: Integer;

Source, Dest: PChar;
begin

end;

the first line of the declaration is the function heading and all of the succeeding lines
make up the block. Ch, L, Source, and Dest are local variables; their declarations apply
only to the UpperCase function block and override—in this block only—any
declarations of the same identifiers that may occur in the program block or in the
interface or implementation section of a unit.

Scope

An identifier, such as a variable or function name, can be used only within the scope
of its declaration. The location of a declaration determines its scope. An identifier
declared within the declaration of a program, function, or procedure has a scope
limited to the block in which it is declared. An identifier declared in the interface
section of a unit has a scope that includes any other units or programs that use the
unit where the declaration occurs. Identifiers with narrower scope—especially
identifiers declared in functions and procedures—are sometimes called local, while
identifiers with wider scope are called global.

Syntactic elements 4-27

Blocks and scope

The rules that determine identifier scope are summarized below.

If the identifier is declared in ...

the declaration of a program, function, or
procedure

the interface section of a unit

the implementation section of a unit, but not
within the block of any function or procedure

the definition of a record type (that is, the
identifier is the name of a field in the record)

the definition of a class (that is, the identifier is
the name of a property or method in the class)

its scope extends ...

from the point where it is declared to the end of
the current block, including all blocks enclosed
within that scope.

from the point where it is declared to the end of
the unit, and to any other unit or program that
uses that unit. (See Chapter 3, “Programs and
units.”)

from the point where it is declared to the end of
the implementation section. The identifier is
available to any function or procedure within
that implementation section.

from the point of its declaration to the end of the
field-type definition. (See “Records” on

page 5-20.)

from the point of its declaration to the end of the
class-type definition, and also includes

descendants of the class and the blocks of all
methods in the class and its descendants. (See
Chapter 7, “Classes and objects.”)

Naming conflicts

When one block encloses another, the former is called the outer block and the latter the
inner block. If an identifier declared in an outer block is redeclared in an inner block,
the inner declaration overrides the outer one and determines the meaning of the
identifier for the duration of the inner block. For example, if you declare a variable
called MaxValue in the interface section of a unit, and then declare another variable
with the same name in a function declaration within that unit, any unqualified
occurrences of MaxValue in the function block are governed by the second, local
declaration. Similarly, a function declared within another function creates a new,
inner scope in which identifiers used by the outer function can be redeclared locally.

The use of multiple units further complicates the definition of scope. Each unit listed
in a uses clause imposes a new scope that encloses the remaining units used and the
program or unit containing the uses clause. The first unit in a uses clause represents
the outermost scope and each succeeding unit represents a new scope inside the
previous one. If two or more units declare the same identifier in their interface
sections, an unqualified reference to the identifier selects the declaration in the
innermost scope—that is, in the unit where the reference itself occurs, or, if that unit
doesn’t declare the identifier, in the last unit in the uses clause that does declare the
identifier.

The System unit is used automatically by every program or unit. The declarations in
System, along with the predefined types, routines, and constants that the compiler
understands automatically, always have the outermost scope.

You can override these rules of scope and by-pass an inner declaration by using a
qualified identifier (see “Qualified identifiers” on page 4-2) or a with statement (see
“With statements” on page 4-20).

4-28 Object Pascal Language Guide

Data types, variables, and constants

A type is essentially a name for a kind of data. When you declare a variable you must
specify its type, which determines the set of values the variable can hold and the
operations that can be performed on it. Every expression returns data of a particular
type, as does every function. Most functions and procedures require parameters of
specific types.

Object Pascal is a “strongly typed” language, which means that it distinguishes a
variety of data types and does not always allow you to substitute one type for
another. This is usually beneficial because it lets the compiler treat data intelligently
and validate your code more thoroughly, preventing hard-to-diagnose runtime
errors. When you need greater flexibility, however, there are mechanisms to
circumvent strong typing. These include typecasting (see “Typecasts” on page 4-14),
pointers (see “Pointers and pointer types” on page 5-24), variants (see “Variant types”
on page 5-29), variant parts in records (see “Variant parts in records” on page 5-21),
and absolute addressing of variables (see “Absolute addresses” on page 5-37).

About types

There are several ways to categorize Object Pascal data types:

¢ Some types are predefined (or built-in); the compiler recognizes these automatically,
without the need for a declaration. Almost all of the types documented in this
language reference are predefined. Other types are created by declaration; these
include user-defined types and the types defined in Delphi’s libraries.

* Types can be classified as either fundamental or generic. The range and format of a
fundamental type is the same in all implementations of Object Pascal, regardless
of the underlying CPU and operating system. The range and format of a generic
type is platform-specific and could vary across different implementations. Most
predefined types are fundamental, but a handful of integer, character, string, and
pointer types are generic. It’s a good idea to use generic types when possible, since
they provide optimal performance and portability. However, changes in storage

Data types, variables, and constants 5-1

Simple types

format from one implementation of a generic type to the next could cause
compatibility problems—for example, if you are streaming data to a file.

e Types can be classified as simple, string, structured, pointer, procedural, or variant. In
addition, type identifiers themselves can be regarded as belonging to a special
“type” because they can be passed as parameters to certain functions (such as
High, Low, and SizeOf).

The outline below shows the taxonomy of Object Pascal data types.

simple
ordinal
integer
character
Boolean
enumerated
subrange
real
string
structured
set
array
record
file
class
class reference
interface
pointer
procedural
variant
type identifier

The standard function SizeOf operates on all variables and type identifiers. It returns
an integer representing the amount of memory (in bytes) used to store data of the
specified type. For example, SizeOf (Longint) returns 4, since a Longint variable uses
four bytes of memory.

Type declarations are illustrated in the sections that follow. For general information
about type declarations, see “Declaring types” on page 5-35.

Simple types

Simple types, which include ordinal types and real types, define ordered sets of values.

Ordinal types

Ordinal types include integer, character, Boolean, enumerated, and subrange types. An
ordinal type defines an ordered set of values in which each value except the first has
a unique predecessor and each value except the last has a unique successor. Further,

5-2 Object Pascal Language Guide

Simpletypes

each value has an ordinality, which determines the ordering of the type. For integer
types, the ordinality of a value is the value itself; for all other ordinal types except
subranges, the first value has ordinality 0, the next value has ordinality 1, and so
forth. If a value has ordinality n, its predecessor has ordinality n—1 and its successor
has ordinality n+1.

Several predefined functions operate on ordinal values and type identifiers. The most
important of them are summarized below.

Function ~ Parameter Return value Remarks
Ord ordinal expression ordinality of expression’s ~ Does not take Int64
value arguments.
Pred ordinal expression predecessor of expression’s Do not use on properties
value that have a write procedure.
Succ ordinal expression successor of expression’s Do not use on properties
value that have a write procedure.
High ordinal type identifier or highest value in type Also operates on short-string
variable of ordinal type types and arrays.
Low ordinal type identifier or lowest value in type Also operates on short-string
variable of ordinal type types and arrays.

For example, High (Byte) returns 255 because the highest value of type Byte is 255, and
Succ(2) returns 3 because 3 is the successor of 2.

The standard procedures Inc and Dec increment and decrement the value of an
ordinal variable. For example, Inc(I) is equivalent to I := Succ(I) and, if I is an
integer variable,to I := T + 1.

Integer types

An integer type represents a subset of the whole numbers. The generic integer types
are Integer and Cardinal; use these whenever possible, since they result in the best
performance for the underlying CPU and operating system. The table below gives
their ranges and storage formats for the current 32-bit Object Pascal compiler.

Table 5.1 Generic integer types for 32-bit implementations of Object Pascal

Type Range Format
Integer —-2147483648..2147483647 signed 32-bit
Cardinal 0..4294967295 unsigned 32-bit

Fundamental integer types include Shortint, Smallint, Longint, Int64, Byte, Word, and
Longword.

Table 5.2 Fundamental integer types

Type Range Format
Shortint -128..127 signed 8-bit
Smallint -32768..32767 signed 16-bit
Longint —2147483648..2147483647 signed 32-bit

Data types, variables, and constants 5-3

Simple types

Note

Table 5.2 Fundamental integer types (continued)

Type Range Format

Int64 268 2631 signed 64-bit
Byte 0..255 unsigned 8-bit
Word 0..65535 unsigned 16-bit
Longword 0..4294967295 unsigned 32-bit

In general, arithmetic operations on integers return a value of type Integer—which, in
its current implementation, is equivalent to the 32-bit Longint. Operations return a
value of type Int64 only when performed on an Int64 operand. Hence the following
code produces incorrect results.

var
I: Integer;
J: Int64;

I:
J

(Integer);
1;

High
T+
To get an Int64 return value in this situation, cast I as Int64:

J := Int64(I) + 1;
For more information, see “Arithmetic operators” on page 4-6.

Most standard routines that take integer arguments truncate Int64 values to 32 bits.
However, the High, Low, Succ, Pred, Inc, Dec, IntToStr, and IntToHex routines fully
support Int64 arguments. Also, the Round, Trunc, StrTolnt64, and StrTolnt64Def
functions return Int64 values. A few routines—including Ord—cannot take [nt64
values at all.

When you increment the last value or decrement the first value of an integer type, the
result wraps around the beginning or end of the range. For example, the Shortint type
has the range —128..127; hence, after execution of the code

var I: Shortint;

T := High(Shortint);
I:=1+1;

the value of [is —128. If compiler range-checking is enabled, however, this code
generates a runtime error.

Character types

The fundamental character types are AnsiChar and WideChar. AnsiChar values are
byte-sized (8-bit) characters ordered according to the extended ANSI character set.
WideChar values are word-sized (16-bit) characters ordered according to the Unicode
character set. The first 256 Unicode characters correspond to the ANSI characters.

The generic character type is Char, which is equivalent to AnsiChar. Because the
implementation of Char is subject to change, it’s a good idea to use the standard

5-4 Object Pascal Language Guide

Simpletypes

function SizeOf rather than a hard-coded constant when writing programs that may
need to handle characters of different sizes.

A string constant of length 1, such as '4', can denote a character value. The
predefined function Chr returns the character value for any integer in the range of
AnsiChar or WideChar; for example, Chr (65) returns the letter A.

Character values, like integers, wrap around when decremented or incremented past
the beginning or end of their range (unless range-checking is enabled). For example,
after execution of the code

var
Letter: Char;
I: Integer;

begin
Letter := High(Letter);
for T := 1 to 66 do

Inc(Letter);
end;

Letter has the value A (ASCII 65).

For more information about Unicode characters, see “About extended character sets”
on page 5-12 and “Working with null-terminated strings” on page 5-12.

Boolean types

The four predefined Boolean types are Boolean, ByteBool, WordBool, and LongBool.
Boolean is the preferred type. The others exist to provide compatibility with different
languages and the Windows environment.

A Boolean variable occupies one byte of memory, a ByteBool variable also occupies
one byte, a WordBool variable occupies two bytes (one word), and a LongBool variable
occupies four bytes (two words).

Boolean values are denoted by the predefined constants True and False. The
following relationships hold.

Boolean ByteBool, WordBool, LongBool
False < True False <> True

Ord(False) =0 Ord(False) =0

Ord(True) =1 Ord(True) <> 0

Succ(False) = True Succ(False) = True

Pred(True) = False Pred(False) = True

A value of type ByteBool, LongBool, or WordBool is considered True when its ordinality
is nonzero. If such a value appears in a context where a Boolean is expected, the
compiler automatically converts any value of nonzero ordinality to True.

Data types, variables, and constants 5-5

Simple types

The remarks above refer to the ordinality of Boolean values—not to the values
themselves. In Object Pascal, Boolean expressions cannot be equated with integers or
reals. Hence, if X is an integer variable, the statement

if X then ...;

generates a compilation error. Casting the variable to a Boolean type is unreliable,
but each of the following alternatives will work.

if X <> 0 then ...; { use longer expression that returns Boolean value }
var OK: Boolean { use Boolean variable }

if X <> 0 then OK := True;
if OK then ...;

Enumerated types

An enumerated type defines an ordered set of values by simply listing identifiers that
denote these values. The values have no inherent meaning, and their ordinality
follows the sequence in which the identifiers are listed.

To declare an enumerated type, use the syntax
type typeName = (valy, ..., val,)

where typeName and each val are valid identifiers. For example, the declaration
type Suit = (Club, Diamond, Heart, Spade);

defines an enumerated type called Suit whose possible values are Club, Diamond,
Heart, and Spade.

When you declare an enumerated type, you are declaring each val to be a constant of
type typeName. If the val identifiers are used for another purpose within the same
scope, naming conflicts occur. For example, suppose you declare the type

type TSound = (Click, Clack, Clock);

Unfortunately, Click is also the name of a method defined for TControl and all of the
objects in Delphi’s VCL that descend from it. So if you're writing a Delphi application
and you create an event handler like

procedure TForml.DBGridlEnter(Sender: TObject);
var Thing: TSound;
begin

Thing := Click;
end;

you’ll get a compilation error; the compiler interprets Click within the scope of the
procedure as a reference to TForm’s Click method. You can work around this by
qualifying the identifier; thus, if TSound is declared in MyUnit, you would use

Thing := MyUnit.Click;

5-6 Object Pascal Language Guide

Simpletypes
A better solution, however, is to choose constant names that are not likely to conflict
with other identifiers. Examples:

type
TSound = (tsClick, tsClack, tsClock);
TMyColor = (mcRed, mcBlue, mcGreen, mcYellow, mcOrange);
Answer = (ansVYes, ansNo, ansMaybe);

You can use the (valy, ..., valy) construction directly in variable declarations, as if it
were a type name:

var MyCard: (Club, Diamond, Heart, Spade);

But if you declare MyCard this way, you can’t declare another variable within the
same scope using these constant identifiers. Thus

var Cardl: (Club, Diamond, Heart, Spade);
var Card2: (Club, Diamond, Heart, Spade);

generates a compilation error. But
var Cardl, Card2: (Club, Diamond, Heart, Spade);
compiles cleanly, as does

type Suit = (Club, Diamond, Heart, Spade);
var

Cardl: Suit;

Card2: Suit;

Subrange types

A subrange type represents a subset of the values in another ordinal type (called the
base type). Any construction of the form Low. .High, where Low and High are constant
expressions of the same ordinal type and Low is less than High, identifies a subrange
type that includes all values between Low and High. For example, if you declare the
enumerated type

type TColors = (Red, Blue, Green, Yellow, Orange, Purple, White, Black);
you can then define a subrange type like
type TMyColors = Green..White;
Here TMyColors includes the values Green, Yellow, Orange, Purple, and White.

You can use numeric constants and characters (string constants of length 1) to define
subrange types:

type
SomeNumbers = -128..127;
Caps = 'A'..'2";

When you use numeric or character constants to define a subrange, the base type is
the smallest integer or character type that contains the specified range.

The Low. .High construction itself functions as a type name, so you can use it directly
in variable declarations. For example,

var SomeNum: 1..500;

declares an integer variable whose value can be anywhere in the range from 1 to 500.

Data types, variables, and constants 5-7

Simple types

The ordinality of each value in a subrange is preserved from the base type. (In the
first example above, if Color is a variable that holds the value Green, Ord (Color) returns
2 regardless of whether Color is of type TColors or TMyColors.) Values do not wrap
around the beginning or end of a subrange, even if the base is an integer or character
type; incrementing or decrementing past the boundary of a subrange simply converts
the value to the base type. Hence, while

type Percentile = 0..99;
var I: Percentile;

I := 100;

produces an error,

I :=99;
Inc(I);

assigns the value 100 to I (unless compiler range-checking is enabled).

The use of constant expressions in subrange definitions introduces a syntactic
difficulty. In any type declaration, when the first meaningful character after = is a left
parenthesis, the compiler assumes that an enumerated type is being defined. Hence
the code

const
X = 50;
Y = 10;
type
Scale = (X - V) * 2..(X +7Y) * 2;

produces an error. Work around this problem by rewriting the type declaration to
avoid the leading parenthesis:

type
Scale =2 * (X - Y).. (X +7Y) * 2;

Real types

A real type defines a set of numbers that can be represented with floating-point
notation. The table below gives the ranges and storage formats for the fundamental
real types.

Table 5.3 Fundamental real types

Type Range Significant digits Size in bytes
Real48 29x10% .. 1.7x 10% 11-12 6
Single 15x107%..3.4x10%® 7-8 4
Double 5.0 x 10732* 1.7 x 10°%8 15-16 8
Extended 3.6 x 107#%1 1.1 x 104932 19-20 10
Comp 263112981 19-20

Currency — -922337203685477.5808.. 922337203685477.5807 19-20

5-8 Object Pascal Language Guide

Stringtypes
The generic type Real, in its current implementation, is equivalent to Double.

Table 5.4 Generic real types
Type Range Significant digits Size in bytes
Real 50x 10724 1.7 x 1038 15-16 8

Note The six-byte Real48 type was called Real in earlier versions of Object Pascal. If you are
recompiling code that uses the older, six-byte Real type, you may want to change it to
Real48. You can also use the {(SREALCOMPATIBILITY ON} compiler directive to
turn Real back into the six-byte type.

The following remarks apply to fundamental real types.

® Real48 is maintained for backward compatibility. Since its storage format is not
native to the Intel CPU family, it results in slower performance than other
floating-point types.

* Extended offers greater precision than other real types but is less portable. Be
careful using Extended if you are creating data files to share across platforms.

¢ The Comp (computational) type is native to the Intel CPU and represents a 64-bit
integer. It is classified as a real, however, because it does not behave like an
ordinal type. (For example, you cannot increment or decrement a Comp value.)
Comp is maintained for backward compatibility only. Use the Int64 type for better
performance.

* Currency is a fixed-point data type that minimizes rounding errors in monetary
calculations. It is stored as a scaled 64-bit integer with the four least-significant
digits implicitly representing decimal places. When mixed with other real types in
assignments and expressions, Currency values are automatically divided or
multiplied by 10000.

String types

A string represents a sequence of characters. Object Pascal supports the following
predefined string types.

Table 5.5 String types

Type Maximum length Memory required Used for

ShortString 255 characters 2 to 256 bytes backward compatibility
AnsiString ~231 characters 4 bytes to 2GB 8-bit (ANSI) characters
WideString ~230 characters 4 bytes to 2GB Unicode characters;

COM servers and interfaces

AnsiString, sometimes called the long string, is the preferred type for most purposes.

String types can be mixed in assignments and expressions; the compiler
automatically performs required conversions. But strings passed by reference to a

Data types, variables, and constants 5-9

String types

function or procedure (as var and out parameters) must be of the appropriate type.
Strings can be explicitly cast to a different string type (see “Typecasts” on page 4-14).

The reserved word string functions like a generic type identifier. For example,
var S: string;

creates a variable S that holds a string. In the default {$H+} state, the compiler
interprets string (when it appears without a bracketed number after it) as AnsiString.
Use the {$H-} directive to turn string into ShortString.

The standard function Length returns the number of characters in a string. The
SetLength procedure adjusts the length of a string. See the online Help for details.

Comparison of strings is defined by the ordering of the characters in corresponding
positions. Between strings of unequal length, each character in the longer string
without a corresponding character in the shorter string takes on a greater-than value.
For example, “AB” is greater than “A”; thatis, 'AB' > 'A' returns True. Zero-length
strings hold the lowest values.

You can index a string variable just as you would an array. If S is a string variable
and i an integer expression, S[i] represents the ith character—or, strictly speaking,
the ith byte—in S. For a ShortString or AnsiString, S[i] is of type AnsiChar; for a
WideString, S[i] is of type WideChar. The statement MyString[2] := 'A'; assigns the
value A to the second character of MyString. The following code uses the standard
UpCase function to convert MyString to uppercase.

var I: Integer;

begin
I := Length(MyString);
while I > 0 do

begin
MyString[I] := UpCase(MyString[I]);
I:=1-1;
end;
end;

Be careful indexing strings in this way, since overwriting the end of a string can cause
access violations. Also, avoid passing long-string indexes as var parameters, because
this results in inefficient code.

You can assign the value of a string constant—or any other expression that returns a
string—to a variable. The length of the string changes dynamically when the
assignment is made. Examples:

MyString := 'Hello world!';

MyString := 'Hello ' + 'world';

MyString := MyString + '!';

MyString := ' '; { space }
MyString := ''; { empty string }

For more information, see “Character strings” on page 4-4 and “String operators” on
page 4-9.

5-10 Object Pascal Language Guide

Stringtypes

Short strings

A ShortString is 0 to 255 characters long. While the length of a ShortString can change
dynamically, its memory is a statically allocated 256 bytes; the first byte stores the
length of the string, and the remaining 255 bytes are available for characters. If S is a
ShortString variable, 0rd(S[0]), like Length(S), returns the length of S; assigning a
value to 5[0], like calling SetLength, changes the length of S. ShortString uses 8-bit
ANSI characters and is maintained for backward compatibility only.

Object Pascal supports short-string types—in effect, subtypes of ShortString—whose
maximum length is anywhere from 0 to 255 characters. These are denoted by a
bracketed numeral appended to the reserved word string. For example,

var MyString: string[100];

creates a variable called MyString whose maximum length is 100 characters. This is
equivalent to the declarations

type CString = string[100];
var MyString: CString;

Variables declared in this way allocate only as much memory as the type requires—
that is, the specified maximum length plus one byte. In our example, MyString uses
101 bytes, as compared to 256 bytes for a variable of the predefined ShortString type.

When you assign a value to a short-string variable, the string is truncated if it exceeds
the maximum length for the type.

The standard functions High and Low operate on short-string type identifiers and
variables. High returns the maximum length of the short-string type, while Low
returns zero.

Long strings

AnsiString, also called a long string, represents a dynamically allocated string whose
maximum length is limited only by available memory. It uses 8-bit ANSI characters.

A long-string variable is a pointer occupying four bytes of memory. When the
variable is empty—that is, when it contains a zero-length string—the pointer is nil
and the string uses no additional storage. When the variable is nonempty, it points to
a dynamically allocated block of memory that contains the string value, a 32-bit
length indicator, and a 32-bit reference count. This memory is allocated on the heap,
but its management is entirely automatic and requires no user code.

Because long-string variables are pointers, two or more of them can reference the same
value without consuming additional memory. The compiler exploits this to conserve
resources and execute assignments faster. Whenever a long-string variable is destroyed
or assigned a new value, the reference count of the old string (the variable’s previous
value) is decremented and the reference count of the new value (if there is one) is
incremented; if the reference count of a string reaches zero, its memory is deallocated.
This process is called reference-counting. When indexing is used to change the value of a
single character in a string, a copy of the string is made if—but only if—its reference
count is greater than one. This is called copy-on-write semantics.

Data types, variables, and constants 5-11

String types

WideString

The WideString type represents a dynamically allocated string of 16-bit Unicode
characters. In most respects it is similar to AnsiString, but it is less efficient because it
does not implement reference-counting and copy-on-write semantics.

WideString is compatible with the COM BSTR type. Delphi has COM support
features that convert AnsiString values to WideString, but if you make calls to the
COM API, you may need to explicitly cast or convert your strings to WideString.

About extended character sets

Windows supports single-byte and multibyte character sets as well as Unicode. With a
single-byte character set (SBCS), each byte in a string represents one character. The
ANGSI character set used by most Western versions of Windows is a single-byte
character set.

In a multibyte character set (MBCS), some characters are represented by one byte and
others by more than one byte. The first byte of a multibyte character is called the lead
byte. In general, the lower 128 characters of a multibyte character set map to the 7-bit
ASCII characters, and any byte whose ordinal value is greater than 127 is the lead
byte of a multibyte character. Only single-byte characters can contain the null value
(#0). Multibyte character sets—especially double-byte character sets (DBCS)—are
widely used for Asian languages.

In the Unicode character set, each character is represented by two bytes. Thus a
Unicode string is a sequence not of individual bytes but of two-byte words. Unicode
characters and strings are also called wide characters and wide character strings. The
first 256 Unicode characters map to the ANSI character set.

Object Pascal supports single-byte and multibyte characters and strings through the
Char, PChar, AnsiChar, PAnsiChar, and AnsiString types. Indexing of multibyte strings
is not reliable, since S [i] represents the ith byte (not necessarily the ith character) in S.
However, Delphi’s standard string-handling functions have multibyte-enabled
counterparts that also implement locale-specific ordering for characters. (Names of
multibyte functions usually start with Ansi-. For example, the multibyte version of
StrPos is AnsiStrPos.) Multibyte character support is operating-system dependent and
based on the current Windows locale.

Object Pascal supports Unicode characters and strings through the WideChar,
PWideChar, and WideString types.

Working with null-terminated strings

Many programming languages, including C and C++, lack a dedicated string data type.
These languages, and environments like Windows that are built with them, rely on null-
terminated strings. A null-terminated string is a zero-based array of characters that ends
with NULL (#0); since the array has no length indicator, the first NULL character marks
the end of the string. You can use Object Pascal constructions and special routines in the

5-12 Object Pascal Language Guide

Stringtypes

SysUtils unit (see Chapter 8, “Standard routines and I/0”) to handle null-terminated
strings when you need to share data with systems that use them.

For example, the following type declarations could be used to store null-terminated
strings.

type
TIdentifier = array[0..15] of Char;
TFileName = array[0..259] of Char;
TMemoText = array[0..1023] of WideChar;

You can assign a string constant to a statically allocated zero-based character array.
(Dynamic arrays won’t work for this purpose.) If you initialize an array constant with
a string that is shorter than the declared length of the array, the remaining characters
are set to #0. For more information about arrays, see “Arrays” on page 5-16.

Using pointers, arrays, and string constants

To manipulate null-terminated strings, it is often necessary to use pointers. (See
“Pointers and pointer types” on page 5-24.) String constants are assignment-
compatible with the PChar and PWideChar types, which represent pointers to
null-terminated arrays of Char and WideChar values. For example,

var P: PChar;

P.:: 'Hello world!"';

points P to an area of memory that contains a null-terminated copy of “Hello world!”
This is equivalent to

const TempString: array[0..12] of Char = 'Hello world!'#0;
var P: PChar;

P := @TempString;

You can also pass string constants to any function that takes value or const
parameters of type PChar or PWideChar—for example StrUpper ('Hello world!'). As
with assignments to a PChar, the compiler generates a null-terminated copy of the
string and gives the function a pointer to that copy. Finally, you can initialize PChar
or PWideChar constants with string literals, alone or in a structured type. Examples:

const
Message: PChar = 'Program terminated';
Prompt: PChar = 'Enter values: ';
Digits: array[0..9] of PChar = (
'Zero', 'One', 'Two', 'Three', 'Four',
'Five', 'Six', 'Seven', 'Eight', 'Nine');
Zero-based character arrays are compatible with PChar and PWideChar. When you
use a character array in place of a pointer value, the compiler converts the array to a

pointer constant whose value corresponds to the address of the first element of the
array. For example,

Data types, variables, and constants 5-13

String types

var
MyArray: array[0..32] of Char;
MyPointer: PChar;

begin
MyArray := 'Hello';
MyPointer := MyArray;
SomeProcedure (MyArray) ;
SomeProcedure (MyPointer) ;

end;

This code calls SomeProcedure twice with the same value.

A character pointer can be indexed as if it were an array. In the example above,
MyPointer[0] returns H. The index specifies an offset added to the pointer before it is
dereferenced. (For PWideChar variables, the index is automatically multiplied by
two.) Thus, if P is a character pointer, P[0] is equivalent to P* and specifies the first
character in the array, P[1] specifies the second character in the array, and so forth;
P[-1] specifies the “character” immediately to the left of P[0]. The compiler performs no
range checking on these indexes.

The StrUpper function illustrates the use of pointer indexing to iterate through a
null-terminated string:

function StrUpper (Dest, Source: PChar; MaxLen: Integer): PChar;
var
I: Integer;
begin
I:=0;
while (I < MaxLen) and (Source[I] <> #0) do
begin
Dest[I] := UpCase(Sourcel[I]);
Inc(I);
end;
Dest [I] := #0;
Result := Dest;
end;

Mixing Pascal strings and null-terminated strings

You can mix long strings (AnsiString values) and null-terminated strings (PChar
values) in expressions and assignments, and you can pass PChar values to functions
or procedures that take long-string parameters. The assignment S := P, where Sis a
string variable and P is a PChar expression, copies a null-terminated string into a long
string.

In a binary operation, if one operand is a long string and the other a PChar, the PChar
operand is converted to a long string.

You can cast a PChar value as a long string. This is useful when you want to perform
a string operation on two PChar values. For example,

S := string(Pl) + string(P2);

5-14 Object Pascal Language Guide

Structuredtypes

You can also cast a long string as a null-terminated string. The following rules apply.

e If S is a long-string expression, PChar (S) casts S as a null-terminated string; it
returns a pointer to the first character in S. For example, if Str1 and Str2 are long
strings, you could call the Win32 API MessageBox function like this:

MessageBox (0, PChar(Strl), PChar(Str2), MB_OK);
(MessageBox is declared in the Windows interface unit.)

* You can also use Pointer (S) to cast a long string to an untyped pointer. But if S is
empty, the typecast returns nil.

* When you cast a long-string variable to a pointer, the pointer remains valid until
the variable is assigned a new value or goes out of scope. If you cast any other
long-string expression to a pointer, the pointer is valid only within the statement
where the typecast is performed.

* When you cast a long-string expression to a pointer, the pointer should usually be
considered read-only. You can safely use the pointer to modify the long string
only when all of the following conditions are satisfied.

¢ The expression cast is a long-string variable.
¢ The string is not empty.

¢ The string is unique—that is, has a reference count of one. To guarantee that the
string is unique, call the SetLength, SetString, or UniqueString procedure.

* The string has not been modified since the typecast was made.

* The characters modified are all within the string. Be careful not to use an
out-of-range index on the pointer.

The same rules apply when mixing WideString values with PWideChar values.

Structured types

Instances of a structured type hold more than one value. Structured types include
sets, arrays, records, and files as well as class, class-reference, and interface types. (For
information about class and class-reference types, see Chapter 7, “Classes and
objects.” For information about interfaces, see Chapter 10, “Object interfaces.”)
Except for sets, which hold ordinal values only, structured types can contain other
structured types; a type can have unlimited levels of structuring.

By default, the values in a structured type are aligned on word or double-word
boundaries for faster access. When you declare a structured type, you can include the
reserved word packed to implement compressed data storage. For example,

type TNumbers = packed array[l..100] of Real;

Using packed slows data access and, in the case of a character array, affects type
compatibility. For more information, see Chapter 11, “Memory management.”

Data types, variables, and constants 5-15

Structured types

Sets

A set is a collection of values of the same ordinal type. The values have no inherent
order, nor is it meaningful for a value to be included twice in a set.

The range of a set type is the power set of a specific ordinal type, called the base type;
that is, the possible values of the set type are all the subsets of the base type,
including the empty set. The base type can have no more than 256 possible values,
and their ordinalities must fall between 0 and 255. Any construction of the form

set of baseType
where baseType is an appropriate ordinal type, identifies a set type.

Because of the size limitations for base types, set types are usually defined with
subranges. For example, the declarations

type
TSomeInts = 1..250;
TIntSet = set of TSomelInts;

create a set type called TIntSet whose values are collections of integers in the range
from 1 to 250. You could accomplish the same thing with

type TIntSet = set of 1..250;
Given this declaration, you can create a sets like this:
var Setl, Set2: TIntSet;

Setl :
Set?2

(1, 3, 5,7, 91;
[2, 4, 6, 8, 10]

You can also use the set of ... construction directly in variable declarations:
var MySet: set of 'a'..'z';
M?Set = ['a','b', 'c'];

Other examples of set types include

set of Byte
set of (Club, Diamond, Heart, Spade)
set of Char;

The in operator tests set membership:
if 'a' in MySet then ... { do something } ;

Every set type can hold the empty set, denoted by []. For more information about
sets, see “Set constructors” on page 4-13 and “Set operators” on page 4-10.

Arrays

An array represents an indexed collection of elements of the same type (called the base
type). Because each element has a unique index, arrays, unlike sets, can meaningfully
contain the same value more than once. Arrays can be allocated statically or dynamically.

5-16 Object Pascal Language Guide

Structuredtypes

Static arrays
Static array types are denoted by constructions of the form
array [indexType;, ..., indexType,] of baseType

where each indexType is an ordinal type whose range does not exceed 2GB. Since the
indexTypes index the array, the number of elements an array can hold is limited by
the product of the sizes of the indexTypes. In practice, indexTypes are usually integer
subranges.

In the simplest case of a one-dimensional array, there is only a single indexType. For
example,

var MyArray: array[l..100] of Char;

declares a variable called MyArray that holds an array of 100 character values. Given
this declaration, MyArray (3] denotes the third character in MyArray. If you create a
static array but don’t assign values to all its elements, the unused elements are still
allocated and contain random data; they are like uninitialized variables.

A multidimensional array is an array of arrays. For example,
type TMatrix = array(l..10] of array[l..50] of Real;

is equivalent to
type TMatrix = array[l..10, 1..50] of Real;

Whichever way TMatrix is declared, it represents an array of 500 real values. A
variable MyMatrix of type TMatrix can be indexed like this: MyMatrix[2,45]; or like
this: MyMatrix (2] [45]. Similarly,

packed array[Boolean,1..10,TShoeSize] of Integer;
is equivalent to
packed array[Boolean] of packed array[l..10] of packed array[TShoeSize] of Integer;

The standard functions Low and High operate on array type identifiers and variables.
They return the low and high bounds of the array’s first index type. The standard
function Length returns the number of elements in the array’s first dimension.

A one-dimensional, packed, static array of Char values is called a packed string. Packed-
string types are compatible with string types and with other packed-string types that
have the same number of elements. See “Type compatibility and identity” on page 5-33.

An array type of the form array[0..x] of Char is called a zero-based character array. Zero-
based character arrays are used to store null-terminated strings and are compatible with
PChar values. See “Working with null-terminated strings” on page 5-12.

Dynamic arrays

Dynamic arrays do not have a fixed size or length. Instead, memory for a dynamic
array is reallocated when you assign a value to the array or pass it to the SetLength
procedure. Dynamic-array types are denoted by constructions of the form

array of baseType

Data types, variables, and constants 5-17

Structured types

For example,
var MyFlexibleArray: array of Real;

declares a one-dimensional dynamic array of reals. The declaration does not allocate
memory for MyFlexibleArray. To create the array in memory, call SetLength. For
example, given the declaration above,

SetLength (MyFlexibleArray, 20);

allocates an array of 20 reals, indexed 0 to 19. Dynamic arrays are always
integer-indexed, always starting from 0.

Dynamic-array variables are implicitly pointers and are managed by the same
reference-counting technique used for long strings. To deallocate a dynamic array,
assign nil to a variable that references the array or pass the variable to Finalize; either
of these methods disposes of the array, provided there are no other references to it.
Dynamic arrays of length 0 have the value nil. Do not apply the dereference operator
() to a dynamic-array variable or pass it to the New or Dispose procedure.

If X and Y are variables of the same dynamic-array type, X := Y points X to the same
array as Y. (There is no need to allocate memory for X before performing this
operation.) Unlike strings and static arrays, dynamic arrays are not automatically
copied before they are written to. For example, after this code executes—

var
A, B: array of Integer;
begin
SetLength(a, 1);
A[0] := 1;
B := A;
B[0] := 2;
end;

—the value of 2[0] is 2. (If A and B were static arrays, 2[0] would still be 1.)

Assigning to a dynamic-array index (for example, MyFlexibleArray (2] := 7) does not
reallocate the array. Out-of-range indexes are not reported at compile time.

When dynamic-array variables are compared, their references are compared, not
their array values. Thus, after execution of the code

var
A, B: array of Integer;
begin
SetLength(a, 1);
SetLength(B, 1);
A[0] := 2;
B[0] := 2;
end;

A = Breturns False but 2[0] = B[0] returns True.

To truncate a dynamic array, pass it to the Copy function and assign the result back to
the array variable. For example, if A is a dynamic array, 2 := Copy (&, 0, 20) truncates
all but the first 20 elements of A.

5-18 Object Pascal Language Guide

Note

Structuredtypes

Once a dynamic array has been allocated, you can pass it to the standard functions
Length, High, and Low. Length returns the number of elements in the array, High
returns the array’s highest index (that is, Length—1), and Low returns 0. In the case of a
zero-length array, High returns —1 (with the anomalous consequence that High < Low).

In some function and procedure declarations, array parameters are represented as
array of baseType, without any index types specified. For example,

function CheckStrings(A: array of string): Boolean;

This indicates that the function operates on all arrays of the specified base type,
regardless of their size, how they are indexed, or whether they are allocated statically
or dynamically. See “Open array parameters” on page 6-13.

Multidimensional dynamic arrays
To declare multidimensional dynamic arrays, use iterated array of ... constructions.
For example,

type TMessageGrid = array of array of string;
var Msgs: TMessageGrid;

declares a two-dimensional array of strings. To instantiate this array, call SetLength
with two integer arguments. For example, if and | are integer-valued variables,

SetLength(Msgs,I,J);
allocates an I-by-J array, and Vsgs [0, 0] denotes an element of that array.

You can create multidimensional dynamic arrays that are not rectangular. The first
step is to call SetLength, passing it parameters for the first # dimensions of the array.
For example,

var Ints: array of array of Integer;
SetLength (Ints,10);

allocates ten rows for Ints but no columns. Later, you can allocate the columns one at
a time (giving them different lengths); for example

SetLength(Ints[2], 5);

makes the third column of Ints five integers long. At this point (even if the other
columns haven’t been allocated) you can assign values to the third column—for
example, Ints[2,4] := 6.

The following example uses dynamic arrays (and the IntToStr function declared in
the SysUtils unit) to create a triangular matrix of strings.

var
A : array of array of string;
I, J : Integer;
begin
SetLength(A, 10);
for I := Low(A) to High(d) do
begin
SetLength(A[I], I);
for J := Low(A[I]) to High(A[I]) do
A[I,J] := IntToStr(I) + ',' + IntToStr(J) + ' ';
end;
end;

Data types, variables, and constants 5-19

Structured types

Array types and assignments

Arrays are assignment-compatible only if they are of the same type. Because Pascal
uses name-equivalence for types, the following code will not compile.

var
Intl: array(l1..10] of Integer;
Int2: array(l..10] of Integer;
Intl := Int2;
To make the assignment work, declare the variables as
var Intl, Int2: array[l..10] of Integer;
or

type IntArray = array[l..10] of Integer;
var

Intl: IntArray;

Int2: IntArray;

Records

A record (analogous to a structure in some languages) represents a heterogeneous set
of elements. Each element is called a field; the declaration of a record type specifies a
name and type for each field. The syntax of a record type declaration is

type recordTypeName = record
fieldListy: type;;

fieldListn: typen;
end

Where recordTypeName is a valid identifier, each type denotes a type, and each fieldList
is a valid identifier or a comma-delimited list of identifiers. The final semicolon is
optional.

For example, the following declaration creates a record type called TDateRec.

type
TDateRec = record
Year: Integer;
Month: (Jan, Feb, Mar, Apr, May, Jun,
Jul, Aug, Sep, Oct, Nov, Dec)
Day: 1..31;
end;

Each TDateRec contains three fields: an integer value called Year, a value of an
enumerated type called Month, and another integer between 1 and 31 called Day. The
identifiers Year, Month, and Day are the field designators for TDateRec, and they behave
like variables. The TDateRec type declaration, however, does not allocate any
memory for the Year, Month, and Day fields; memory is allocated when you
instantiate the record, like this:

var Recordl, Record2: TDateRec;

5-20 Object Pascal Language Guide

Structuredtypes

This variable declaration creates two instances of TDateRec, called Recordl and
Record?.

You can access the fields of a record by qualifying the field designators with the
record’s name:

Recordl.Year := 1904;
Recordl.Month := Jun;
Recordl.Day := 16;

Or use a with statement:

with Recordl do

begin
Year := 1904;
Month := Jun;
Day := 16;
end;

You can now copy the values of Record1’s fields to Record2:
Record? := Recordl;

Because the scope of a field designator is limited to the record in which it occurs, you
don’t have to worry about naming conflicts between field designators and other
variables.

Instead of defining record types, you can use the record ... construction directly in
variable declarations:

var S: record
Name: string;
Age: Integer;
end;

However, a declaration like this largely defeats the purpose of records, which is to
avoid repetitive coding of similar groups of variables. Moreover, separately declared
records of this kind will not be assignment-compatible, even if their structures are
identical.

Variant parts in records

A record type can have a variant part, which looks like a case statement. The variant
part must follow the other fields in the record declaration.

To declare a record type with a variant part, use the following syntax.
type recordTypeName = record
fieldListy: typeq;

ﬁ'eldListn: typen;
case tag: ordinalType of
constantListy: (varianty);

éonstuntListn: (variant,) ;
end;

Data types, variables, and constants 5-21

Structured types

The first part of the declaration—up to the reserved word case—is the same as that of
a standard record type. The remainder of the declaration—from case to the optional
final semicolon—is called the variant part. In the variant part,

e tag is optional and can be any valid identifier. If you omit tag, omit the colon (:)
after it as well.

* ordinalType denotes an ordinal type.

* Each constantList is a constant denoting a value of type ordinalType, or a
comma-delimited list of such constants. No value can be represented more than
once in the combined constantLists.

* Each variant is a comma-delimited list of declarations resembling the fieldList: type
constructions in the main part of the record type. That is, a variant has the form

fieldListy: typey;

fieldList,: type,;

where each fieldList is a valid identifier or comma-delimited list of identifiers, each
type denotes a type, and the final semicolon is optional. The types must not be long
strings, dynamic arrays, variants (that is, Variant types), or interfaces, nor can they
be structured types that contain long strings, dynamic arrays, variants, or
interfaces; but they can be pointers to these types.

Records with variant parts are complicated syntactically but deceptively simple
semantically. The variant part of a record contains several variants which share the
same space in memory. You can read or write to any field of any variant at any time;
but if you write to a field in one variant and then to a field in another variant, you may
be overwriting your own data. The tag, if there is one, functions as an extra field (of
type ordinalType) in the non-variant part of the record.

Variant parts have two purposes. First, suppose you want to create a record type that
has fields for different kinds of data, but you know that you will never need to use all
of the fields in a single record instance. For example,

type
TEmployee = record
FirstName, LastName: string[40];
BirthDate: TDate;
case Salaried: Boolean of
True: (AnnualSalary: Currency);
False: (HourlyWage: Currency);
end;

The idea here is that every employee has either a salary or an hourly wage, but not
both. So when you create an instance of TEmployee, there is no reason to allocate
enough memory for both fields. In this case, the only difference between the variants
is in the field names, but the fields could just as easily have been of different types.
Consider some more complicated examples:

5-22 Object Pascal Language Guide

Structuredtypes

type
TPerson = record
FirstName, LastName: string[40];
BirthDate: TDate;
case Citizen: Boolean of
True: (Birthplace: string[40]);
False: (Country: string[20];
EntryPort: string[20];
EntryDate, ExitDate: TDate);
end;

type
TShapeList = (Rectangle, Triangle, Circle, Ellipse, Other);
TFigure = record
case TShapeList of

Rectangle: (Height, Width: Real);
Triangle: (Sidel, Side2, Angle: Real);
Circle: (Radius: Real);
Ellipse, Other: ();

end;

For each record instance, the compiler allocates enough memory to hold all the fields
in the largest variant. The optional tag and the constantLists (like Rectangle, Triangle,
and so forth in the last example above) play no role in the way the compiler manages
the fields; they are there only for the convenience of the programmer.

The second reason for variant parts is that they let you treat the same data as
belonging to different types, even in cases where the compiler would not allow a
typecast. For example, if you have a 64-bit Real as the first field in one variant and a
32-bit Integer as the first field in another, you can assign a value to the Rea! field and
then read back the first 32 bits of it as the value of the Integer field (passing it, say, to a
function that requires integer parameters).

File types

A file is an ordered set of elements of the same type. Standard I/O routines use the
predefined TextFile or Text type, which represents a file containing characters
organized into lines. For more information about file input and output, see
Chapter 8, “Standard routines and I/0O.”

To declare a file type, use the syntax
type fileTypeName = file of type

where fileTypeName is any valid identifier and type is a fixed-size type. Pointer
types—whether implicit or explicit—are not allowed, so a file cannot contain
dynamic arrays, long strings, classes, objects, pointers, variants, other files, or
structured types that contain any of these.

Data types, variables, and constants 5-23

Pointers and pointer types

For example,

type
PhoneEntry = record
FirstName, LastName: string([20];
PhoneNumber: string[15];
Listed: Boolean;
end;
PhoneList = file of PhoneEntry;

declares a file type for recording names and telephone numbers.

You can also use the file of ... construction directly in a variable declaration. For
example,

var Listl: file of PhoneEntry;
The word file by itself indicates an untyped file:

var DataFile: file;
For more information, see “Untyped files” on page 8-4.

Files are not allowed in arrays or records.

Pointers and pointer types

A pointer is a variable that denotes a memory address. When a pointer holds the
address of another variable, we say that it points to the location of that variable in
memory or to the data stored there. In the case of an array or other structured type, a
pointer holds the address of the first element in the structure.

Pointers are typed to indicate the kind of data stored at the addresses they hold. The
general-purpose Pointer type can represent a pointer to any data, while more specialized
pointer types reference only specific types of data. Pointers occupy four bytes of memory.

Overview of pointers
To see how pointers work, look at the following example.
1 var
2 X, Y: Integer; // X and Y are Integer variables
3 P: “Integer; // P points to an Integer
4 begin
5 X :=17; // assign a value to X
6 P := @X; // assign the address of X to P
7 Y := P; // dereference P; assign the result to Y
8 end;

Line 2 declares X and Y as variables of type Integer. Line 3 declares P as a pointer to
an Integer value; this means that P can point to the location of X or Y. Line 5 assigns a
value to X, and line 6 assigns the address of X (denoted by €x) to P. Finally, line 7
retrieves the value at the location pointed to by P (denoted by "P) and assigns it to Y.
After this code executes, X and Y have the same value, namely 17.

5-24 Object Pascal Language Guide

Pointers and pointer types

The @ operator, which we have used here to take the address of a variable, also
operates on functions and procedures. For more information, see “The @ operator”
on page 4-11 and “Procedural types in statements and expressions” on page 5-28.

The symbol has two purposes, both of which are illustrated in our example. When
it appears before a type identifier—

“typeName

—it denotes a type that represents pointers to variables of type typeName. When it
appears after a pointer variable—

pointer”

—it dereferences the pointer; that is, it returns the value stored at the memory address
held by the pointer.

Our example may seem like a roundabout way of copying the value of one variable
to another—something that we could have accomplished with a simple assignment
statement. But pointers are useful for several reasons. First, understanding pointers
will help you to understand Object Pascal, since pointers often operate behind the
scenes in code where they don’t appear explicitly. Any data type that requires large,
dynamically allocated blocks of memory uses pointers. Long-string variables, for
instance, are implicitly pointers, as are class variables. Moreover, some advanced
programming techniques require the use of pointers.

Finally, pointers are sometimes the only way to circumvent Object Pascal’s strict data
typing. By referencing a variable with an all-purpose Pointer, casting the Pointer to a
more specific type, and then dereferencing it, you can treat the data stored by any
variable as if it belonged to any type. For example, the following code assigns data
stored in a real variable to an integer variable.

type

PInteger = “Integer;
var

R: Single;

I: Integer;

P: Pointer;

PI: PInteger;
begin

P := @R;

PI := PInteger(P);

I := PI";
end;

Of course, reals and integers are stored in different formats. This assignment simply
copies raw binary data from R to I, without converting it.

In addition to assigning the result of an @ operation, you can use several standard
routines to give a value to a pointer. The New and GetMem procedures assign a
memory address to an existing pointer, while the Addr and Ptr functions return a
pointer to a specified address or variable.

Dereferenced pointers can be qualified and can function as qualifiers, as in the
expression P1*.Data".

Data types, variables, and constants 5-25

Pointers and pointer types

The reserved word nil is a special constant that can be assigned to any pointer. When
nil is assigned to a pointer, the pointer doesn’t reference anything.

Pointer types

You can declare a pointer to any type, using the syntax
type pointerTypeName = "“type

When you define a record or other data type, it’s a common practice also to define a
pointer to that type. This makes it easy to manipulate instances of the type without
copying large blocks of memory.

Standard pointer types exist for many purposes. The most versatile is Pointer, which
can point to data of any kind. But a Pointer variable cannot be dereferenced; placing
the A symbol after a Pointer variable causes a compilation error. To access the data
referenced by a Pointer variable, first cast it to another pointer type and then
dereference it.

Character pointers

The fundamental types PAnsiChar and PWideChar represent pointers to AnsiChar and
WideChar values, respectively. The generic PChar represents a pointer to a Char (that
is, in its current implementation, to an AnsiChar). These character pointers are used to
manipulate null-terminated strings. (See “Working with null-terminated strings” on
page 5-12.)

Other standard pointer types

The System and SysUtils units declare many standard pointer types. While these
types are not built-in, they are commonly used in Delphi programming.

Table 5.6 Selected pointer types declared in System and SysUtils

Pointer type Points to variables of type

PAnsiString, PString AnsiString

PByteArray ByteArray (declared in Syslltils). Used to typecast dynamically
allocated memory for array access.

PCurrency Currency

PExtended Extended

POleVariant OleVariant

PShortString ShortString. Useful when porting legacy code that uses PString type.

PTextBuf TextBuf (declared in SysUtils). TextBuf is the internal buffer type in a
TTextRec file record.)

PVarRec TVarRec (declared in Systemn)

PVariant Variant

PWideString WideString

PWordArray TWordArray (declared in SysUtils). Used to typecast dynamically

allocated memory for arrays of 2-byte values.

5-26 Object Pascal Language Guide

Proceduraltypes

Procedural types

Procedural types allow you to treat procedures and functions as values that can be
assigned to variables or passed to other procedures and functions. For example,
suppose you define a function called Calc that takes two integer parameters and
returns an integer:

function Calc(X,Y: Integer): Integer;
You can assign the Calc function to the variable F:

var F: function(X,Y: Integer): Integer;
F := Calc;

If you take any procedure or function heading and remove the identifier after the
word procedure or function, what’s left is the name of a procedural type. You can
use such type names directly in variable declarations (as in the example above) or to
declare new types:

type
TIntegerFunction = function: Integer;
TProcedure = procedure;
TStrProc = procedure(const S: string);
TMathFunc = function(X: Double): Double;

var
F: TIntegerFunction; { F is a parameterless function that returns an integer }
Proc: TProcedure; { Proc is a parameterless procedure }
SP: TStrProc; { SP 1s a procedure that takes a string parameter }
M: TMathFunc; { M is a function that takes a Double (real) parameter

and returns a Double }
procedure FuncProc(P: TIntegerFunction); { FuncProc is a procedure whose only parameter
is a parameterless integer-valued function }

The variables above are all procedure pointers—that is, pointers to the address of a
procedure or function. If you want to reference a method of an instance object (see
Chapter 7, “Classes and objects”), you need to add the words of object to the
procedural type name. For example

type
TMethod = procedure of object;
TNotifyEvent = procedure(Sender: TObject) of object;

These types represent method pointers. A method pointer is really a pair of pointers;
the first stores the address of a method, and the second stores a reference to the object
the method belongs to. Given the declarations

type
TNotifyEvent = procedure(Sender: TObject) of object;
TMainForm = class(TForm)
procedure ButtonClick(Sender: TObject);

end;

var
MainForm: TMainForm;
OnClick: TNotifyEvent

Data types, variables, and constants 5-27

Procedural types

we could make the following assignment.
OnClick := MainForm.ButtonClick;
Two procedural types are compatible if they have
¢ the same calling convention,
¢ the same return value (or no return value), and

¢ the same number of parameters, with identically typed parameters in
corresponding positions. (Parameter names do not matter.)

Procedure pointer types are always incompatible with method pointer types. The
value nil can be assigned to any procedural type.

Nested procedures and functions (routines declared within other routines) cannot be
used as procedural values, nor can predefined procedures and functions. If you want
to use a predefined routine like Length as a procedural value, write a wrapper for it:

function FLength(S: string): Integer;
begin

Result := Length(S);
end;

Procedural types in statements and expressions

When a procedural variable is on the left side of an assignment statement, the
compiler expects a procedural value on the right. The assignment makes the variable
on the left a pointer to the function or procedure indicated on the right. In other
contexts, however, using a procedural variable results in a call to the referenced
procedure or function. You can even use a procedural variable to pass parameters:

var
F: function(X: Integer): Integer;
I: Integer;

function SomeFunction(X: Integer): Integer;

F := SomeFunction; // assign SomeFunction to F
I:=F(4); // call function; assign result to I

In assignment statements, the type of the variable on the left determines the
interpretation of procedure or method pointers on the right. For example,

var
F, G: function: Integer;
I: Integer;

function SomeFunction: Integer;

F := SomeFunction; // assign SomeFunction to F
G := F; // copy F to G
I:=¢G; // call function; assign result to I

The first statement assigns a procedural value to F. The second statement copies that
value to another variable. The third statement makes a call to the referenced function

5-28 Object Pascal Language Guide

Varianttypes

and assigns the result to I. Because I is an integer variable, not a procedural one, the
last assignment actually calls the function (which returns an integer).

In some situations it is less clear how a procedural variable should be interpreted.
Consider the statement

if F = MyFunction then ...;

In this case, the occurrence of F results in a function call; the compiler calls the
function pointed to by F, then calls the function MyFunction, then compares the
results. The rule is that whenever a procedural variable occurs within an expression,
it represents a call to the referenced procedure or function. In a case where F
references a procedure (which doesn’t return a value), or where F references a
function that requires parameters, the statement above causes a compilation error. To
compare the procedural value of F with MyFunction, use

if @F = @MyFunction then ...;

€F converts F into an untyped pointer variable that contains an address, and
eMyFunction returns the address of MyFunction.

To get the memory address of a procedural variable (rather than the address stored
in it), use @@. For example, €eF returns the address of F.

The @ operator can also be used to assign an untyped pointer value to a procedural
variable. For example,

var StrComp: function(Strl, Str2: PChar): Integer;

@étrComp := GetProcAddress (KernelHandle, 'lstrcmpi');
calls the Windows GetProcAddress function and points StrComp to the result.

Any procedural variable can hold the value nil, which means that it points to
nothing. But attempting to call a nil-valued procedural variable is an error. To test
whether a procedural variable is assigned, use the standard function Assigned:

if Assigned(OnClick) then OnClick(X);

Variant types

Sometimes it is necessary to manipulate data whose type varies or cannot be
determined at compile time. In these cases, one option is to use variables and
parameters of type Variant, which represent values that can change type at runtime.
Variants, as they are called, offer greater flexibility but consume more memory than
regular variables, and operations on them are slower than on statically bound types.
Moreover, illicit operations on variants often result in runtime errors, where similar
mistakes with regular variables would have been caught at compile time.

Variants can hold values of any type except records, sets, static arrays, files, classes,
class references, pointers, and [nt64. In other words, with the exception of Int64,
variants can hold anything but structured types and pointers. They can hold COM
and CORBA objects, whose methods and properties can be accessed through them.
(See Chapter 10, “Object interfaces”.) They can hold dynamic arrays, and they can

Data types, variables, and constants 5-29

Variant types

hold a special kind of static array called a variant array. (See “Variant arrays” on
page 5-32.) Variants can mix with other variants and with integer, real, string, and
Boolean values in expressions and assignments; the compiler automatically performs
type conversions.

Variants that contain strings cannot be indexed. That is, if V is a variant that holds a
string value, the construction v[1] is illegitimate.

A variant occupies 16 bytes of memory and consists of a type code and a value, or
pointer to a value, of the type specified by the code. All variants are initialized on
creation to the special value Unassigned. The special value Null indicates unknown or
missing data.

The standard function VarType returns a variant’s type code. The varTypeMask
constant is a bit mask used to extract the code from VarType’s return value, so that,
for example,

VarType (V) and varTypeMask = varDouble

returns True if V contains a Double or an array of Double. (The mask simply hides the
first bit, which indicates whether the variant holds an array.) The TVarData record
type defined in the System unit can be used to typecast variants and gain access to
their internal representation. See the online Help on VarType for a list if codes, and
note that new type codes may be added in future implementations of Object Pascal.

Variant type conversions

All integer, real, string, character, and Boolean types (except Int64) are
assignment-compatible with Variant. Expressions can be explicitly cast as variants,
and the VarAsType and VarCast standard routines can be used to change the internal
representation of a variant. The following code demonstrates the use of variants and
some of the automatic conversions performed when variants are mixed with other

types.
var
V1, V2, V3, V4, V5: Variant;
I: Integer;
D: Double;
S: string;
begin
Vl := 1; { integer value }
V2 := 1234.5678; { real value }
V3 := 'Hello world!'; { string value }
V4 := '1000'; { string value }
V5 := V1 + V2 + V4; { real value 2235.5678}
I :=Vl; { I=1 (integer value) }
D :=V2; { D= 1234.5678 (real value) }
S :=V3; { S = 'Hello world!' (string value) }
I :=V4; { I =1000 (integer value) }
S :=V5; { S = '2235.5678" (string value) }
end;

5-30 Object Pascal Language Guide

Varianttypes

The compiler performs type conversions according to the following rules.

Table 5.7

Target
Source

integer

real

string

character

Boolean

Unassigned

Null

Variant type conversion rules

integer real string character Boolean
converts converts to converts to same as returns False if 0,
integer real string string True otherwise
formats representation | (left)
rounds to converts real converts to same as returns False if 0,
nearest integer | formats string string True otherwise
representation | (left)
using
Windows
regional
settings
converts to converts to converts same as returns False if
integer, real using string / string string is “false”
truncating if Windows character (left) (non—case-
necessary; regional formats sensitive) or a
raises settings; raises numeric string
exception if exception if that evaluates to
string is not string is not 0, True if string is
numeric numeric “true” or a
nonzero numeric
string; raises
exception
otherwise
same as string | same as string | same as string |sameas |same as string
(above) (above) (above) string-to- | (above)
string
False =0, False =0, False = “0”, same as False = False,
True=-1 True=-1 True="-1" string True = True
(255 if Byte) (left)
returns 0 returns 0 returns empty |same as returns False
string string
(left)
raises raises raises same as |raises exception
exception exception exception string
(left)

Out-of-range assignments often result in the target variable getting the highest value
in its range. Invalid assignments or casts raise the EVariantError exception.

Special conversion rules apply to the TDateTime real type declared in the System unit.
When a TDateTime is converted to any other type, it treated as a normal Double. When
an integer, real, or Boolean is converted to a TDateTime, it is first converted to a
Double, then read as a date-time value. When a string is converted to a TDateTime, it is
interpreted as a date-time value using the Windows regional settings. When an
Unassigned value is converted to TDateTime, it is treated like the real or integer

value 0. Converting a Null value to TDateTime raises an exception.

Data types, variables, and constants

5-31

Variant types
If a variant references a COM object, any attempt to convert it reads the object’s

default property and converts that value to the requested type. If the object has no
default property, an exception is raised.

Variants in expressions

All operators except #, is, and in take variant operands. Operations on variants
return Variant values; they return Null if one or both operands is Null, and raise an
exception if one or both operands is Unassigned. In a binary operation, if only one
operand is a variant, the other is converted to a variant.

The return type of an operation is determined by its operands. In general, the same
rules that apply to operands of statically bound types apply to variants. For example,
if V1 and V2 are variants that hold an integer and a real value, then V1 + V2 returns a
real-valued variant. (See “Operators” on page 4-6.) With variants, however, you can
perform binary operations on combinations of values that would not be allowed
using statically typed expressions. When possible, the compiler converts mismatched
variants using the rules summarized in Table 5.7. For example, if V3 and V4 are
variants that hold a numeric string and an integer, the expression V3 + V4 returns an
integer-valued variant; the numeric string is converted to an integer before the
operation is performed.

Variant arrays

You cannot assign an ordinary static array to a variant. Instead, create a variant array
by calling either of the standard functions VarArrayCreate or VarArrayOf. For
example,

V: Variant;

V := VarArrayCreate([0,9], varInteger);

creates a variant array of integers (of length 10) and assigns it to the variant V. The
array can be indexed using V[0], V[1], and so forth, but it is not possible to pass a
variant array element as a var parameter. Variant arrays are always indexed with
integers.

The second parameter in the call to VarArrayCreate is the type code for the array’s
base type. For a list of these codes, see the online Help on VarType. Never pass the
code varString to VarArrayCreate; to create a variant array of strings, use varOleStr.

Variants can hold variant arrays of different sizes, dimensions, and base types. The
elements of a variant array can be of any type allowed in variants except ShortString
and AnsiString, and if the base type of the array is Variant, its elements can even be
heterogeneous. Use the VarArrayRedim function to resize a variant array. Other
standard routines that operate on variant arrays include VarArrayDimCount,
VarArrayLowBound, VarArrayHighBound, VarArrayRef, VarArrayLock, and
VarArrayUnlock.

5-32 Object Pascal Language Guide

Type compatibility and identity
When a variant containing a variant array is assigned to another variant or passed as

a value parameter, the entire array is copied. Don’t perform such operations
unnecessarily, since they are memory-inefficient.

OleVariant

The OleVariant type represents variants that contain only COM-compatible types.
When a Variant is assigned to an OleVariant, incompatible types are converted to
their compatible counterparts. For example, if a variant containing an AnsiString is
assigned to an OleVariant, the AnsiString becomes a WideString.

Type compatibility and identity

To understand which operations can be performed on which expressions, we need to
distinguish several kinds of compatibility among types and values. These include
type identity, type compatibility, and assignment-compatibility.

Type identity

Type identity is almost straightforward. When one type identifier is declared using
another type identifier, without qualification, they denote the same type. Thus, given
the declarations

type
T1 = Integer;
T2 = T1;
T3 = Integer;
T4 = T2;

T1,T2, T3, T4, and Integer all denote the same type. To create distinct types, repeat the
word type in the declaration. For example,

type TMyInteger = type Integer;
creates a new type called TMylnteger which is not identical to Integer.

Language constructions that function as type names denote a different type each time
they occur. Thus the declarations

type
TS1 = set of Char;
TS2 = set of Char;

create two distinct types, TS1 and TS2. Similarly, the variable declarations

var
S1: string[10];
S2: string[10];

create two variables of distinct types. To create variables of the same type, use

var S1, S2: string[10];

Data types, variables, and constants 5-33

Type compatibility and identity

or

type MyString = string[10];
var

S1: MyString;

S2: MyString;

Type compatibility

Every type is compatible with itself. Two distinct types are compatible if they satisfy
at least one of the following conditions.

They are both real types.

They are both integer types.

One type is a subrange of the other.

Both types are subranges of the same type.

Both are set types with compatible base types.

Both are packed-string types with the same number of components.

One is a string type and the other is a string, packed-string, or Char type.

One type is Variant and the other is an integer, real, string, character, or Boolean
type.

Both are class, class-reference, or interface types, and one type is derived from the
other.

One type is PChar or PWideChar and the other is a zero-based character array of the
form array[0..n] of Char.

One type is Pointer (an untyped pointer) and the other is any pointer type.

Both types are (typed) pointers to the same type and the {$T+} compiler directive
is in effect.

Both are procedural types with the same result type, the same number of
parameters, and type-identity between parameters in corresponding positions.

Assignment-compatibility

Assignment-compatibility is not a symmetric relation. An expression of type T2 can
be assigned to a variable of type T1 if the value of the expression falls in the range of
T1 and at least one of the following conditions is satisfied.

5-34 Object

T1 and T2 are of the same type, and it is not a file type or structured type that
contains a file type at any level.

T1 and T2 are compatible ordinal types.
T1 and T2 are both real types.
T1 is a real type and T2 is an integer type.

Pascal Language Guide

Declaring types

¢ T1is PChar or any string type and the expression is a string constant.
e T1 and T2 are both string types.

e T1is a string type and T2 is a Char or packed-string type.

* T1is along string and T2 is PChar.

e T1 and T2 are compatible packed-string types.

e T1 and T2 are compatible set types.

* T1 and T2 are compatible pointer types.

* T1 and T2 are both class, class-reference, or interface types and T2 is a derived
from T1.

e T1 is an interface type and T2 is a class type that implements T1.

e T1is PChar or PWideChar and T2 is a zero-based character array of the form
array [0..n] of Char.

¢ T1 and T2 are compatible procedural types. (A function or procedure identifier is
treated, in certain assignment statements, as an expression of a procedural type.
See “Procedural types in statements and expressions” on page 5-28.)

e T1is Variant and T2 is an integer, real, string, character, Boolean, or interface type.
¢ T1is an integer, real, string, character, or Boolean type and 12 is Variant.

* T1 is the IUnknown or IDispatch interface type and T2 is Variant. (The variant’s type
code must be varEmpty, varUnknown, or varDispatch if T1 is IUnknown, and
varEmpty or varDispatch if T1 is IDispatch.)

Declaring types

A type declaration specifies an identifier that denotes a type. The syntax for a type
declaration is

type newTypeName = type

where newTypeName is a valid identifier. For example, given the type declaration
type TMyString = string;

you can make the variable declaration
var S: TMyString;

A type identifier’s scope doesn’t include the type declaration itself (except for pointer
types). So you cannot, for example, define a record type that uses itself recursively.

When you declare a type that is identical to an existing type, the compiler treats the
new type identifier as an alias for the old one. Thus, given the declarations

type TValue = Real;
var

X: Real;

Y: TValue;

Data types, variables, and constants 5-35

Variables

X and Y are of the same type; at runtime, there is no way to distinguish TValue from
Real. This is usually of little consequence, but if your purpose in defining a new type
is to utilize runtime type information—for example, to associate a Delphi property
editor with properties of a particular type—the distinction between “different name”
and “different type” becomes important. In this case, use the syntax

type newTypeName = type type
For example,
type TValue = type Real;

forces the compiler to create a new, distinct type called TValue.

Variables

A variable is an identifier whose value can change at runtime. Put differently, a
variable is a name for a location in memory; you can use the name to read or write to
the memory location. Variables are like containers for data, and, because they are
typed, they tell the compiler how to interpret the data they hold.

Declaring variables

The basic syntax for a variable declaration is
var identifierList: type;

where identifierList is a comma-delimited list of valid identifiers and type is any valid
type. For example,

var I: Integer;
declares a variable I of type Integer, while
var X, Y: Real;
declares two variables—X and Y—of type Real.
Consecutive variable declarations do not have to repeat the reserved word var:

var
X, Y, Z: Double;
I, J, K: Integer;
Digit: 0..9;
Okay: Boolean;

Variables declared within a procedure or function are sometimes called local, while
other variables are called global. Global variables can be initialized at the same time
they are declared, using the syntax

var identifier: type = constantExpression;

where constantExpression is any constant expression representing a value of type type.
(For more information about constant expressions, see “Constant expressions” on
page 5-39.) Thus the declaration

5-36 Object Pascal Language Guide

Variables

var I: Integer = 7;
is equivalent to the declaration and statement

var I: Integer;
I:=17;

Multiple variable declarations (such as var X, Y, 7: Real;) cannot include
initializations, nor can declarations of variant and file-type variables.

If you don’t explicitly initialize a global variable, the compiler initializes it to 0. Local
variables, in contrast, cannot be initialized in their declarations and contain random
data until a value is assigned to them.

When you declare a variable, you are allocating memory which is freed
automatically when the variable is no longer used. In particular, local variables exist
only until the program exits from the function or procedure in which they are
declared. For more information about variables and memory management, see
Chapter 11, “Memory management.”

Absolute addresses

To declare a variable that resides at a specified memory address, put the word
absolute after the type name, followed by an address. Example:

var CrtMode: Byte absolute $0040;

This technique is useful only in low-level programming, for example when writing
device drivers.

To create a new variable that resides at the same address as an existing variable, use
the name of the existing variable (instead of an address) after the word absolute. For
example,

var
Str: string[32];
StrLen: Byte absolute Str;

specifies that the variable StrLen should start at the same address as Str. Since the first
byte of a short string contains the string’s length, the value of StrLen is the length of
Str.

You cannot initialize a variable in an absolute declaration.

Dynamic variables

You can create dynamic variables by calling the GetMem or New procedure. Such
variables are allocated on the heap and are not managed automatically. Once you
create one, it is your responsibility ultimately to free the variable’s memory; use
FreeMem to destroy variables created by GetMem and Dispose to destroy variables
created by New. Other standard routines that operate on dynamic variables include
ReallocMem, Initialize, StrAlloc, and StrDispose.

Long strings and dynamic arrays are also heap-allocated dynamic variables, but their
memory is managed automatically.

Data types, variables, and constants 5-37

Declared constants

Thread-local variables

Thread-local (or thread) variables are used in multithreaded applications. A thread-local
variable is like a global variable, except that each thread of execution gets its own
private copy of the variable, which cannot be accessed from other threads. Thread-local
variables are declared with threadvar instead of var. For example,

threadvar X: Integer;
Thread-variable declarations

® cannot occur within a procedure or function.
* cannot include initializations.
* cannot specify the absolute directive.

Reference-counted variables (such as long strings, dynamic arrays, or interfaces) are
not thread-safe, even if they are declared with threadvar. Do not use dynamic thread
variables, since there is in general no way to free the heap-allocated memory created
by each thread of execution. Finally, do not create pointer- or procedural-type thread
variables.

Declared constants

Several different language constructions are referred to as “constants”. There are
numeric constants (also called numerals) like 17, and string constants (also called
character strings or string literals) like 'Hello world!'; for information about numeric
and string constants, see Chapter 4, “Syntactic elements.” Every enumerated type
defines constants that represent the values of that type. There are predefined
constants like True, False, and nil. Finally, there are constants that, like variables, are
created individually by declaration.

Declared constants are either true constants or typed constants. These two kinds of
constant are superficially similar, but they are governed by different rules and used
for different purposes.

True constants

A true constant is a declared identifier whose value cannot change. For example,
const MaxValue = 237;

declares a constant called MaxValue that returns the integer 237. The syntax for
declaring a true constant is

const identifier = constantExpression

where identifier is any valid identifier and constantExpression is an expression that the
compiler can evaluate without executing your program. (See “Constant expressions”
on page 5-39 for more information.)

5-38 Object Pascal Language Guide

Declared constants

If constantExpression returns an ordinal value, you can specify the type of the declared
constant using a value typecast. For example

const MyNumber = Int64(17);

declares a constant called MyNumber, of type Int64, that returns the integer 17.
Otherwise, the type of the declared constant is the type of the constantExpression.

e If constantExpression is a character string, the declared constant is compatible with
any string type. If the character string is of length 1, it is also compatible with any

character type.

e If constantExpression is a real, its type is Extended. If it is an integer, its type is given

by the table below.

Table 5.8

Range of constant
(hexadecimal)

-$8000000000000000..-$80000001
—$80000000..—$8001

—$8000..-$81

-$80..-1

0..$7F

$80..$FF

$0100..$7FFF

$8000..$FFFF

$10000..$7FFFFFFF
$80000000..$FFFFFFFF
$100000000..$7FFFFFFFFFFFFFFF

Types for integer constants

Range of constant
(decimal)

2632147483649
—2147483648..~32769
-32768.-129
-128.-1

0.127

128..255

256..32767
32768..65535
65536..2147483647
2147483648..4294967295
4294967296..2%%-1

Type

Int64
Integer
Smallint
Shortint
0..127
Byte
0..32767
Word
0..2147483647
Cardinal
Int64

Here are some examples of constant declarations:

const
Min = 0;
Max = 100;

Center = (Max - Min) div 2;
Beta = Chr(225);

NumChars = Ord('Z') - Ord('A') + 1;

Message = 'Out of memory';
ErrStr = ' Error: ' + Message +

' [
. i

ErrPos = 80 - Length(ErrStr) div 2;

Lnl0 = 2.302585092994045684;
Inl0R = 1 / Lnl0;

Numeric = ['0"'..'9'];

Alpha = ['A'..'Z", 'a'..'z'];
AlphaNum = Alpha + Numeric;

Constant expressions

A constant expression is an expression that the compiler can evaluate without
executing the program in which it occurs. Constant expressions include numerals;

Data types, variables, and constants 5-39

Declared constants

character strings; true constants; values of enumerated types; the special constants
True, False, and nil; and expressions built exclusively from these elements with
operators, typecasts, and set constructors. Constant expressions cannot include
variables, pointers, or function calls, except calls to the following predefined

functions:
Abs High Low Pred Succ
Chr Length Odd Round Swap
Hi Lo Ord SizeOf Trunc

This definition of a constant expression is used in several places in Object Pascal’s
syntax specification. Constant expressions are required for initializing global
variables, defining subrange types, specifying default parameter values, writing case
statements, and declaring both true and typed constants.

Examples of constant expressions:

100

Y

256 - 1

(2.5+1) / (2.5 -1)
'Borland' + ' ' + 'Delphi’
Chr(32)

Ord('z") - Ord('A') + 1

Resource strings

Resource strings are stored as resources and linked into the executable or library so
that they can be modified without recompiling the program. For more information,
see the online Help topics on localizing applications.

Resource strings are declared like other true constants, except that the word const is
replaced by resourcestring. The expression to the right of the = symbol must be a
constant expression and must return a string value. For example,

resourcestring
CreateError = 'Cannot create file %s'; { for explanations of format specifiers, }
OpenError = 'Cannot open file %s'; { see 'Format strings' in the online Help }

LineTooLong = 'Line too long';
ProductName = 'Borland Delphi\000\000';
SomeResourceString = SomeTrueConstant;

The compiler automatically resolves naming conflicts among resource strings in
different libraries.

Typed constants

Typed constants, unlike true constants, can hold values of array, record, procedural,
and pointer types. Typed constants cannot occur in constant expressions.

In the default {$]+} compiler state, typed constants can have new values assigned to
them; they behave essentially like initialized variables. But if the {$]-} compiler

5-40 Object Pascal Language Guide

Declared constants

directive is in effect, typed constants cannot change value at runtime; they are, in
effect, read-only variables.

Declare a typed constant like this:
const identifier: type = value

where identifier is any valid identifier, type is any type except files and variants, and
value is an expression of type type. For example,

const Max: Integer = 100;

In most cases, value must be a constant expression; but if type is an array, record,
procedural, or pointer type, special rules apply.

Array constants

To declare an array constant, enclose the values of the array’s elements, separated by
commas, in parentheses at the end of the declaration. These values must be
represented by constant expressions. For example,

const Digits: array(0..9] of Char = ('0', '1', '2', '3', "4, '5', '6', '7', '8', '9');
declares a typed constant called Digits that holds an array of characters.

Zero-based character arrays often represent null-terminated strings, and for this
reason string constants can be used to initialize character arrays. So the declaration
above can be more conveniently represented as

const Digits: array([0..9] of Char = '0123456789"';

To define a multidimensional array constant, enclose the values of each dimension in
a separate set of parentheses, separated by commas. For example,

type TCube = array(0..1, 0..1, 0..1] of Integer;
const Maze: TCube = (((0, 1), (2, 3)), ((4, 5), (6,7)));

creates an array called Maze where

Maze[0,0,0] =0
Maze[0,0,1] =1
Maze[0,1,0] =2
Maze[0,1,1] =3
Maze[1,0,0] =4
Maze[1,0,1] =5
Maze[1,1,0] =6
Maze[1,1,1] =7

Array constants cannot contain file-type values at any level.

Record constants

To declare a record constant, specify the value of each field—as fieldName: value,
with the field assignments separated by semicolons—in parentheses at the end of the
declaration. The values must be represented by constant expressions. The fields must
be listed in the order in which they appear in the record type declaration, and the tag
field, if there is one, must have a value specified; if the record has a variant part, only
the variant selected by the tag field can be assigned values.

Data types, variables, and constants 5-41

Declared constants

Examples:
type
TPoint = record
X, Y: Single;
end;

TVector = array([0..1] of TPoint;
TMonth = (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec);
TDate = record
D: 1..31;
M: TMonth;
Y: 1900..1999;
end;
const
Origin: TPoint = (X: 0.0; Y: 0.0);
Line: TVector = ((X: -3.1; Y: 1.5), (X: 5.8; Y: 3.0));
SomeDay: TDate = (D: 2; M: Dec; Y: 1960);

Record constants cannot contain file-type values at any level.

Procedural constants

To declare a procedural constant, specify the name of a function or procedure that is
compatible with the declared type of the constant. For example,

function Calc(X, Y: Integer): Integer;

begin

end;

type TFunction = function(X, Y: Integer): Integer;
const MyFunction: TFunction = Calc;

Given these declarations, you can use the procedural constant MyFunction in a
function call:

I := MyFunction(5, 7)
You can also assign the value nil to a procedural constant.

Pointer constants

When you declare a pointer constant, you must initialize it to a value that can be
resolved—at least as a relative address—at compile time. There are three ways to do
this: with the @ operator, with nil, and (if the constant is of type PChar) with a string
literal. For example, if I is a global variable of type Integer, you can declare a constant like

const PI: “Integer = @I;

The compiler can resolve this because global variables are part of the code segment.
So are functions and global constants:

const PF: Pointer = @MyFunction;

Because string literals are allocated as global constants, you can initialize a PChar
constant with a string literal:

const WarningStr: PChar = 'Warning!';

Addresses of local (stack-allocated) and dynamic (heap-allocated) variables cannot
be assigned to pointer constants.

5-42 Object Pascal Language Guide

Procedures and functions

Procedures and functions—referred to collectively as routines—are self-contained
statement blocks that can be called from different locations in a program. A function
is a routine that returns a value when it executes. A procedure is a routine that does
not return a value.

Function calls, because they return a value, can be used as expressions in
assignments and operations. For example,

I := SomeFunction(X);

calls SomeFunction and assigns the result to I. Function calls cannot appear on the left
side of an assignment statement.

Both function and procedure calls can be used as complete statements. For example,
DoSomething;

calls the DoSomething routine; if DoSomething is a function, its return value is
discarded.

Procedures and functions can call themselves recursively.

Declaring procedures and functions

When you declare a procedure or function, you specify its name, the number and
type of parameters it takes, and, in the case of a function, the type of its return value;
this part of the declaration is sometimes called the prototype, heading, or header. Then
you write a block of code that executes whenever the procedure or function is called;
this part is sometimes called the routine’s body or block.

The standard procedure Exit can occur within the body of any procedure or function.
Exit halts execution of the routine where it occurs and immediately passes program
control back to the point from which the routine was called.

Procedures and functions 6-1

Declaring procedures and functions

Procedure declarations

A procedure declaration has the form

procedure procedureName (parameterList); directives;
localDeclarations;
begin
statements
end;

where procedureName is any valid identifier, statements is a sequence of statements
that execute when the procedure is called, and (parameterList), directives;, and
localDeclarations; are optional.

¢ For information about the parameterList, see “Parameters” on page 6-9.

¢ For information about directives, see “Calling conventions” on page 6-4, “Forward
and interface declarations” on page 6-5, “External declarations” on page 6-6, and
“Overloading procedures and functions” on page 6-7. If you include more than
one directive, separate them with semicolons.

¢ For information about localDeclarations, which declares local identifiers, see “Local
declarations” on page 6-8.

Here is an example of a procedure declaration:

procedure NumString(N: Integer; var S: string);
var

V: Integer;
begin

V := Abs(N);

S='Y

repeat

S := Chr(Vmod 10 + Ord('0')) + S;

V := V div 10;

until vV = 0;

if N< O then S := '-' + S;

end;

Given this declaration, you can call the NumString procedure like this:
NumString (17, MyString);

This procedure call assigns the value “17” to MyString (which must be a string
variable).

Within a procedure’s statement block, you can use variables and other identifiers
declared in the localDeclarations part of the procedure. You can also use the parameter
names from the parameter list (like N and S in the example above); the parameter list
defines a set of local variables, so don’t try to redeclare the parameter names in the
localDeclarations section. Finally, you can use any identifiers within whose scope the
procedure declaration falls.

6-2 Object Pascal Language Guide

Declaring procedures and functions

Function declarations

A function declaration is like a procedure declaration except that it specifies a return
type and a return value. Function declarations have the form

function functionName (parameterList) : returnType; directives;
localDeclarations;
begin
statements
end;

where functionName is any valid identifier, returnType is any type, statements is a
sequence of statements that execute when the function is called, and (parameterList),
directives;, and localDeclarations; are optional.

¢ For information about the parameterList, see “Parameters” on page 6-9.

¢ For information about directives, see “Calling conventions” on page 6-4, “Forward
and interface declarations” on page 6-5, “External declarations” on page 6-6, and
“Overloading procedures and functions” on page 6-7. If you include more than
one directive, separate them with semicolons.

¢ For information about localDeclarations, which declares local identifiers, see “Local
declarations” on page 6-8.

The function’s statement block is governed by the same rules that apply to
procedures. Within the statement block, you can use variables and other identifiers
declared in the localDeclarations part of the function, parameter names from the
parameter list, and any identifiers within whose scope the function declaration falls.
In addition, the function name itself acts as a special variable that holds the function’s
return value, as does the predefined variable Result.

For example,

function WF: Integer;
begin

WF := 17;
end;

defines a constant function called WF that takes no parameters and always returns
the integer value 17. This declaration is equivalent to

function WF: Integer;
begin

Result := 17;
end;

Here is a more complicated function declaration:

function Max(A: array of Real; N: Integer): Real;
var

X: Real;

I: Integer;
begin

X := A[0];

for T :=1toN-1do

if X < A[I] then X := A[I];

Max := X;

end;

Procedures and functions 6-3

Declaring procedures and functions

You can assign a value to Result or to the function name repeatedly within a
statement block, as long as you assign only values that match the declared return
type. When execution of the function terminates, whatever value was last assigned to
Result or to the function name becomes the function’s return value. For example,

function Power (X: Real; Y: Integer): Real;
var
I: Integer;
begin
Result := 1.0;
I:=Y;
while I > 0 do
begin
if 0dd(I) then Result := Result * X;
I:=1div 2;
X := Sqr(X);
end;
end;

Result and the function name always represent the same value. Hence

function MyFunction: Integer;
begin

MyFunction := 5;

Result := Result * 2;

MyFunction := Result + 1;
end;

returns the value 11. But Result is not completely interchangeable with the function
name. When the function name appears on the left side of an assignment statement,
the compiler assumes that it is being used (like Result) to track the return value; when
the function name appears anywhere else in the statement block, the compiler
interprets it as a recursive call to the function itself. Result, on the other hand, can be
used as a variable in operations, typecasts, set constructors, indexes, and calls to
other routines.

Result is implicitly declared in every function, so do not try to redeclare it.

If execution terminates without an assignment being made to Result or the function
name, then the function’s return value is undefined.

Calling conventions

When you declare a procedure or function, you can specify a calling convention using
one of the directives register, pascal, cdecl, stdcall, and safecall. For example,

function MyFunction(X, Y: Real): Real; cdecl;

Calling conventions determine the order in which parameters are passed to the
routine. They also affect the removal of parameters from the stack, the use of registers
for passing parameters, and error and exception handling. The default calling
convention is register.

6-4 Object Pascal Language Guide

Declaring procedures and functions

* The register and pascal conventions pass parameters from left to right; that is, the
leftmost parameter is evaluated and passed first and the rightmost parameter is
evaluated and passed last. The cdecl, stdcall, and safecall conventions pass
parameters from right to left.

¢ For all conventions except cdecl, the procedure or function removes parameters
from the stack upon returning. With the cdecl convention, the caller removes
parameters from the stack when the call returns.

* The register convention uses up to three CPU registers to pass parameters, while
the other conventions pass all parameters on the stack.

* The safecall convention implements COM error and exception handling.

The table below summarizes calling conventions.

Table 6.1 Calling conventions

Directive Parameter order Clean-up Passes parameters in registers?
register Left-to-right Routine Yes
pascal Left-to-right Routine No
cdecl Right-to-left Caller No
stdcall Right-to-left Routine No
safecall Right-to-left Routine No

The default register convention is the most efficient, since it usually avoids creation
of a stack frame. (Access methods for published properties must use register.) The
cdecl convention is useful when you call functions from DLLs written in C or C++,
while stdcall and safecall are used for Windows API calls. The safecall convention
must be used for declaring dual-interface methods (see Chapter 10, “Object
interfaces”). The pascal convention is maintained for backward compatibility. For
more information on calling conventions, see Chapter 12, “Program control.”

The directives near, far, and export refer to calling conventions in 16-bit Windows
programming. They have no effect in 32-bit applications and are maintained for
backward compatibility only.

Forward and interface declarations

The forward directive replaces the block, including local variable declarations and
statements, in a procedure or function declaration. For example,

function Calculate(X, Y: Integer): Real; forward;

declares a function called Calculate. Somewhere after the forward declaration, the
routine must be redeclared in a defining declaration that includes a block. The defining
declaration for Calculate might look like this:

function Calculate;

{ declarations }
begin

{ statement block }
end;

Procedures and functions 6-5

Declaring procedures and functions

Ordinarily, a defining declaration does not have to repeat the routine’s parameter list
or return type, but if it does repeat them, they must match those in the forward
declaration exactly (except that default parameters can be omitted). If the forward
declaration specifies an overloaded procedure or function (see “Overloading
procedures and functions” on page 6-7), then the defining declaration must repeat
the parameter list.

Between a forward declaration and its defining declaration, you can place nothing
except other declarations. The defining declaration can be an external or assembler
declaration, but it cannot be another forward declaration.

The purpose of a forward declaration is to extend the scope of a procedure or
function identifier to an earlier point in the source code. This allows other procedures
and functions to call the forward-declared routine before it is actually defined.
Besides letting you organize your code more flexibly, forward declarations are
sometimes necessary for mutual recursions.

The forward directive is not allowed in the interface section of a unit. Procedure and
function headers in the interface section, however, behave like forward declarations
and must have defining declarations in the implementation section. A routine
declared in the interface section is available from anywhere else in the unit and from
any other unit or program that uses the unit where it is declared.

External declarations

The external directive, which replaces the block in a procedure or function
declaration, allows you to call procedures and functions that are compiled separately
from your program.

Linking to .OBJ files

To call routines from a separately compiled .OB] file, first link the .OB]J file to your
application using the $L (or $LINK) compiler directive. For example,

{SL BLOCK.OBJ}

links BLOCK.OB]J into the program or unit in which it occurs. Next, declare the
functions and procedures that you want to call:

procedure MoveWord(var Source, Dest; Count: Integer); external;
procedure FillWord(var Dest; Data: Integer; Count: Integer); external;

Now you can call the MoveWord and FillWord routines from BLOCK.OB]J.

Declarations like the ones above are frequently used to access external routines
written in assembly language. You can also place assembly-language routines
directly in your Object Pascal source code; for more information, see Chapter 13,
“Inline assembler code.”

6-6 Object Pascal Language Guide

Declaring procedures and functions

Importing functions from DLLs
To import routines from a dynamic-link library, attach a directive of the form

external stringConstant;

to the end of a normal procedure or function header, where stringConstant is the
name of the .DLL file in single quotation marks. For example,

function SomeFunction(S: string): string; external 'strlib.dll’;
imports a function called SomeFunction from STRLIB.DLL.

You can import a routine under a different name from the one it has in the DLL. If
you do this, specify the original name in the external directive:

external stringConstant| name stringConstant,;

where the first stringConstant gives the name of the .DLL file and the second
stringConstant is the routine’s original name. For example, the following declaration
imports a function from USER32.DLL (part of the Windows API).

function MessageBox (HWnd: Integer; Text, Caption: PChar; Flags: Integer): Integer;
stdcall; external 'user32.dll' name 'MessageBoxA';

The function’s original name is MessageBoxA, but it is imported as MessageBox.

Instead of a name, you can use a number to identify the routine you want to import:
external stringConstant index integerConstant;

where integerConstant is the routine’s index in the DLL export table.

In your importing declaration, be sure to match the exact spelling and case of the
routine’s name. Later, when you call the imported routine, the name is
case-insensitive.

For more information about DLLs, see Chapter 9, “Dynamic-link libraries and
packages.”

Overloading procedures and functions

You can declare more than one routine in the same scope with the same name. This is
called overloading. Overloaded routines must be declared with the overload directive
and must have distinguishing parameter lists. For example, consider the declarations

function Divide(X, Y: Real): Real; overload;
begin

Result := X/V;
end;

function Divide(X, Y: Integer): Integer; overload;
begin

Result := X div Y;
end;

These declarations create two functions, both called Divide, that take parameters of
different types. When you call Divide, the compiler determines which function to

Procedures and functions 6-7

Declaring procedures and functions

invoke by looking at the actual parameters passed in the call. For example,
Divide(6.0, 3.0) calls the first Divide function, because its arguments are real-valued.

You can pass to an overloaded routine parameters that are not identical in type with
those in any of the routine’s declarations, but that are assignment-compatible with the
parameters in more than one declaration. This happens most frequently when a routine
is overloaded with different integer types or different real types—for example,

procedure Store(X: Longint); overload;
procedure Store(X: Shortint); overload;

In these cases, when it is possible to do so without ambiguity, the compiler invokes
the routine whose parameters are of the type with the smallest range that
accommodates the actual parameters in the call. (Remember that real-valued
constant expressions are always of type Extended.)

Overloaded routines must be distinguished by the number of parameters they take
or the types of their parameters. Hence the following pair of declarations causes a
compilation error.

function Cap(S: string): string; overload;

procedure Cap(var Str: string); overload;

But the declarations

function Func(X: Real; Y: Integer): Real; overload;

function Func(X: Integer; Y: Real): Real; overload;

are legal.

When an overloaded routine is declared in a forward or interface declaration, the
defining declaration must repeat the routine’s parameter list.

If you use default parameters in overloaded routines, be careful of ambiguous
parameter signatures. For more information, see “Default parameters and
overloaded routines” on page 6-17.

You can limit the potential effects of overloading by qualifying a routine’s name when
you call it. For example, Unit1.MyProcedure (X, Y) can call only routines declared in Unit1;
if no routine in Unit1 matches the name and parameter list in the call, an error results.

For information about distributing overloaded methods in a class hierarchy, see
“Overloading methods” on page 7-12. For information about exporting overloaded
routines from a DLL, see “The exports clause” on page 9-4.

Local declarations

The body of a function or procedure often begins with declarations of local variables
used in the routine’s statement block. These declarations can also include constants,
types, and other routines. The scope of a local identifier is limited to the routine
where it is declared.

6-8 Object Pascal Language Guide

Parameters

Nested routines

Functions and procedures sometimes contain other functions and procedures within
the local-declarations section of their blocks. For example, the following declaration
of a procedure called DoSomething contains a nested procedure.

procedure DoSomething(S: string);
var
X, Y: Integer;

procedure NestedProc(S: string);
begin
end;

begin

NestedProc(S) ;

end;

The scope of a nested routine is limited to the procedure or function in which it is
declared. In our example, NestedProc can be called only within DoSomething.

For real examples of nested routines, look at the DateTimeToString procedure, the
ScanDate function, and other routines in the SysUtils unit.

Parameters

Most procedure and function headers include a parameter list. For example, in the
header

function Power (X: Real; Y: Integer): Real;
the parameter listis (X: Real; Y: Integer).

A parameter list is a sequence of parameter declarations separated by semicolons and
enclosed in parentheses. Each declaration is a comma-delimited series of parameter
names, followed in most cases by a colon and a type identifier, and in some cases by
the = symbol and a default value. Parameter names must be valid identifiers. Any
declaration can be preceded by one of the reserved words var, const, and out.
Examples:

(X, Y: Real)

(var S: string; X: Integer)

(HWnd: Integer; Text, Caption: PChar; Flags: Integer)

(const P; I: Integer)

The parameter list specifies the number, order, and type of parameters that must be
passed to the routine when it is called. If a routine does not take any parameters, omit
the identifier list and the parentheses in its declaration:

procedure UpdateRecords;
begin

end;

Procedures and functions 6-9

Parameters
Within the procedure or function body, the parameter names (X and Y in the first

example above) can be used as local variables. Do not redeclare the parameter names
in the local declarations section of the procedure or function body.

Parameter semantics

Parameters are categorized in several ways:

* Every parameter is classified as value, variable, constant, or out. Value parameters
are the default; the reserved words var, const, and out indicate variable, constant,
and out parameters, respectively.

* Value parameters are always typed, while constant, variable, and out parameters
can be either typed or untyped.

* Special rules apply to array parameters. See “Array parameters” on page 6-13.

Files and instances of structured types that contain files can be passed only as
variable (var) parameters.

Value and variable parameters

Most parameters are either value parameters (the default) or variable (var)
parameters. Value parameters are passed by value, while variable parameters are
passed by reference. To see what this means, consider the following functions.

function DoubleByValue(X: Integer): Integer; // X 1s a value parameter
begin

X =X *2;

Result := X;
end;

function DoubleByRef (var X: Integer): Integer; // X is a variable parameter
begin

X =X *2;

Result := X;
end;

These functions return the same result, but only the second one—DoubleByRef—can
change the value of a variable passed to it. Suppose we call the functions like this:

var
I, J, V, W: Integer;

begin
I:
Vo
J
W

end;

4;
4;
DoubleByValue(I); // J
DoubleByRef (V) ; /W

(TRl
o oo
<
(Tl

=

After this code executes, the variable I, which was passed to DoubleByValue, has the
same value we initially assigned to it. But the variable V, which was passed to
DoubleByRef, has a different value.

A value parameter acts like a local variable that gets initialized to the value passed in
the procedure or function call. If you pass a variable as a value parameter, the

6-10 Object Pascal Language Guide

Parameters

procedure or function creates a copy of it; changes made to the copy have no effect on
the original variable and are lost when program execution returns to the caller.

A variable parameter, on the other hand, acts like a pointer rather than a copy.
Changes made to the parameter within the body of a function or procedure persist
after program execution returns to the caller and the parameter name itself has gone
out of scope.

Even if the same variable is passed in two or more var parameters, no copies are
made. This is illustrated in the following example.

procedure AddOne (var X, Y: Integer);

begin
X :=X+1;
Y=Y +1;
end;

var I: Integer;
begin
I:=1;
AddOne (I, I);
end;

After this code executes, the value of I is 3.

If a routine’s declaration specifies a var parameter, you must pass an assignable
expression—that is, a variable, typed constant (in the {$J+} state), dereferenced
pointer, field, or indexed variable—to the routine when you call it. To use our
previous examples, DoubleByRef (7) produces an error, although DoubleByvalue(7) is
legal.

Indexes and pointer dereferences passed in var parameters—for example,
DoubleByRef (MyArray[I])—are evaluated once, before execution of the routine.

Constant parameters

A constant (const) parameter is like a local constant or read-only variable. Constant
parameters are similar to value parameters, except that you can’t assign a value to a
constant parameter within the body of a procedure or function, nor can you pass one
as a var parameter to another routine. (But when you pass an object reference as a
constant parameter, you can still modify the object’s properties.)

Using const allows the compiler to optimize code for structured- and string-type
parameters. It also provides a safeguard against unintentionally passing a parameter
by reference to another routine.

Here, for example, is the header for the CompareStr function in the SysUtils unit:
function CompareStr(const S1, S2: string): Integer;

Because S1 and 52 are not modified in the body of CompareStr, they can be declared
as constant parameters.

Out parameters

An out parameter, like a variable parameter, is passed by reference. With an out
parameter, however, the initial value of the referenced variable is discarded by the

Procedures and functions 6-11

Parameters

routine it is passed to. The out parameter is for output only; that is, it tells the
function or procedure where to store output, but doesn’t provide any input.

For example, consider the procedure heading
procedure GetInfo(out Info: SomeRecordType);
When you call GetInfo, you must pass it a variable of type SomeRecordType:

var MyRecord: SomeRecordType;

GetInfo(MyRecord);

But you're not using MyRecord to pass any data to the Getlnfo procedure; MyRecord is
just a container where you want GetInfo to store the information it generates. The call
to GetInfo immediately frees the memory used by MyRecord, before program control
passes to the procedure.

Out parameters are frequently used with distributed-object models like COM and
CORBA. In addition, you should use out parameters when you pass an uninitialized
variable to a function or procedure.

Untyped parameters

You can omit type specifications when declaring var, const, and out parameters.
(Value parameters must be typed.) For example,

procedure TakeAnything(const C);

declares a procedure called TakeAnything that accepts a parameter of any type. When
you call such a routine, you cannot pass it a numeral or untyped numeric constant.

Within a procedure or function body, untyped parameters are incompatible with
every type. To operate on an untyped parameter, you must cast it. In general, the
compiler cannot verify that operations on untyped parameters are valid.

The following example uses untyped parameters in a function called Equal that
compares a specified number of bytes of any two variables.

function Equal (var Source, Dest; Size: Integer): Boolean;
type
TBytes = array[0..MaxInt - 1] of Byte;
var
N: Integer;
begin
N :=0;
while (N < Size) and (TBytes(Dest)[N] = TBytes(Source) [N]) do
Inc(N);
Equal := N = Size;
end;

Given the declarations

type
TVector = array[l..10] of Integer;
TPoint = record
X, Y: Integer;
end;

6-12 Object Pascal Language Guide

Parameters

var
Vecl, Vec2: TVector;
N: Integer;
P: TPoint;

you could make the following calls to Equal:

Equal (Vecl, Vec2, SizeOf (TVector)) // compare Vecl to Vec2

Equal (Vecl, Vec2, SizeOf (Integer) * N) // compare first N elements of Vecl and Vec2

Equal (Vecl[1], Vecl[6], SizeOf(Integer) * 5) // compare first 5 to last 5 elements of Vecl
Equal (Vecl[1], P, 4) // compare Vecl[l] to P.X and Vecl[2] to P.Y

String parameters

When you declare routines that take short-string parameters, you cannot include
length specifiers in the parameter declarations. That is, the declaration

procedure Check(S: string(20]); // syntax error
causes a compilation error. But

type TString20 = string[20];
procedure Check(S: TString20);

is valid. The special identifier OpenString can be used to declare routines that take
short-string parameters of varying length:

procedure Check(S: OpenString);

When the {$H-} and {$P+} compiler directives are both in effect, the reserved word
string is equivalent to OpenString in parameter declarations.

Short strings, OpenString, $H, and $P are supported for backward compatibility only.
In new code, you can avoid these considerations by using long strings.

Array parameters

When you declare routines that take array parameters, you cannot include index type
specifiers in the parameter declarations. That is, the declaration

procedure Sort (A: array[l..10] of Integer); // syntax error
causes a compilation error. But

type TDigits = array[l..10] of Integer;
procedure Sort (A: TDigits);

is valid. For most purposes, however, open array parameters are a better solution.

Open array parameters

Open array parameters allow arrays of different sizes to be passed to the same
procedure or function. To define a routine with an open array parameter, use the
syntax array of type (rather than array[X..Y] of type) in the parameter declaration.

Procedures and functions 6-13

Parameters

For example,
function Find(A: array of Char): Integer;

declares a function called Find that takes a character array of any size and returns an
integer.

Note The syntax of open array parameters resembles that of dynamic array types, but they
do not mean the same thing. The example above creates a function that takes any
array of Char elements, including (but not limited to) dynamic arrays. To declare
parameters that must be dynamic arrays, you need to specify a type identifier:

type TDynamicCharArray = array of Char;
function Find(A: TDynamicCharArray): Integer;

For information about dynamic arrays, see “Dynamic arrays” on page 5-17.
Within the body of a routine, open array parameters are governed by the following rules.

¢ They are always zero-based. The first element is 0, the second element is 1, and so
forth. The standard Low and High functions return 0 and Length—1, respectively.
The SizeOf function returns the size of the actual array passed to the routine.

¢ They can be accessed by element only. Assignments to an entire open array
parameter are not allowed.

¢ They can be passed to other procedures and functions only as open array
parameters or untyped var parameters. They cannot be passed to SetLength.

¢ Instead of an array, you can pass a variable of the open array parameter’s base
type. It will be treated as an array of length 1.

When you pass an array as an open array value parameter, the compiler creates a
local copy of the array within the routine’s stack frame. Be careful not to overflow the
stack by passing large arrays.

The following examples use open array parameters to define a Clear procedure that
assigns zero to each element in an array of reals and a Sum function that computes
the sum of the elements in an array of reals.

procedure Clear(var A: array of Real);

var

I: Integer;
begin

for I := 0 to High(A) do A[I] := 0;
end;

function Sum(const A: array of Real): Real;
var
I: Integer;
S: Real;
begin
S :=0;
for I := 0 to High(2) do S := S + A[I];
Sum := S;
end;

When you call routines that use open array parameters, you can pass open array
constructors to them. See “Open array constructors” on page 6-18.

6-14 Object Pascal Language Guide

Parameters

Variant open array parameters

Variant open array parameters allow you to pass an array of differently-typed
expressions to a single procedure or function. To define a routine with a variant open
array parameter, specify array of const as the parameter’s type. Thus

procedure DoSomething(A: array of comst);
declares a procedure called DoSomething that can operate on heterogeneous arrays.

The array of const construction is equivalent to array of TVarRec. TVarRec, declared
in the System unit, represents a record with a variant part that can hold values of
integer, Boolean, character, real, string, pointer, class, class reference, interface, and
variant types. TVarRec’s VType field indicates the type of each element in the array.
Some types are passed as pointers rather than values; in particular, long strings are
passed as Pointer and must be typecast to string. See the online Help on TVarRec for
details.

The following example uses a variant open array parameter in a function that creates
a string representation of each element passed to it and concatenates the results into a
single string. The string-handling routines called in this function are defined in
SysUtils.

function MakeStr(const Args: array of const): string;
const
BoolChars: array[Boolean] of Char = ('F', 'T');
var
I: Integer;
begin
Result := '';
for I := 0 to High(Args) do
with Args[I] do
case VType of

vtInteger: Result := Result + IntToStr(VInteger);
vtBoolean: Result := Result + BoolChars[VBoolean];
vtChar: Result := Result + VChar;
vtExtended: Result := Result + FloatToStr (VExtended");
vtString: Result := Result + VString”;
vtPChar: Result := Result + VPChar;
vtObject: Result := Result + VObject.ClassName;
vtClass: Result := Result + VClass.ClassName;
vtAnsiString: Result := Result + string(VAnsiString);
vtCurrency: Result := Result + CurrToStr(VCurrency”);
vtVariant: Result := Result + string(VVariant’);
vtInt64d: Result := Result + IntToStr(VInt6d");
end;
end;

We can call this function using an open array constructor (see “Open array
constructors” on page 6-18). For example,

MakeStr (['test', 100, ' ', True, 3.14159, TForm])
returns the string “test100 T3.14159TForm”.

Procedures and functions 6-15

Parameters

Default parameters

You can specify default parameter values in a procedure or function heading. Default
values are allowed only for typed const and value parameters. To provide a default
value, end the parameter declaration with the = symbol followed by a constant
expression that is assignment-compatible with the parameter’s type.

For example, given the declaration
procedure FillArray (A: array of Integer; Value: Integer = 0);
the following procedure calls are equivalent.

FillArray (MyArray) ;
FillArray (MyArray, 0);

A multiple-parameter declaration cannot specify a default value. Thus, while
function MyFunction(X: Real = 3.5; Y: Real = 3.5): Real;

is legal,
function MyFunction(X, Y: Real = 3.5): Real; // syntax error

is not.

Parameters with default values must occur at the end of the parameter list. That is, all
parameters following the first declared default value must also have default values.
So the following declaration is illegal.

procedure MyProcedure(I: Integer = 1; S: string); // syntax error

Default values specified in a procedural type override those specified in an actual
routine. Thus, given the declarations

type TResizer = function(X: Real; Y: Real = 1.0): Real;
function Resizer (X: Real; Y: Real = 2.0): Real;
var

F: TResizer;

N: Real;

the statements

F := Resizer;
F(N);

result in the values (N, 1.0) being passed to Resizer.

Default parameters are limited to values that can be specified by a constant
expression. (See “Constant expressions” on page 5-39.) Hence parameters of a
dynamic-array, procedural, class, class-reference, or interface type can have no value
other than nil as their default. Parameters of a record, variant, file, static-array, or
object type cannot have default values at all.

For information about calling routines with default parameter values, see “Calling
procedures and functions” on page 6-17.

6-16 Object Pascal Language Guide

Calling procedures and functions

Default parameters and overloaded routines

If you use default parameter values in an overloaded routine, avoid ambiguous
parameter signatures. Consider, for example, the following.

procedure Confused(I: Integer); overload;
procedure Confused(I: Integer; J: Integer = 0); overload;

Cénfused(X); // Which procedure is called?

In fact, neither procedure is called. This code generates a compilation error.

Default parameters in forward and interface declarations

If a routine has a forward declaration or appears in the interface section of a unit,
default parameter values—if there are any—must be specified in the forward or
interface declaration. In this case, the default values can be omitted from the defining
(implementation) declaration; but if the defining declaration includes default values,
they must match those in the forward or interface declaration exactly.

Calling procedures and functions

When you call a procedure or function, program control passes from the point where
the call is made to the body of the routine. You can make the call using the routine’s
declared name (with or without qualifiers) or using a procedural variable that points
to the routine. In either case, if the routine is declared with parameters, your call to it
must pass parameters that correspond in order and type to the routine’s parameter
list. The parameters you pass to a routine are called actual parameters, while the
parameters in the routine’s declaration are called formal parameters.

When calling a routine, remember that

* expressions used to pass typed const and value parameters must be
assignment-compatible with the corresponding formal parameters.

* expressions used to pass var and out parameters must be identically typed with
the corresponding formal parameters, unless the formal parameters are untyped.

* only assignable expressions can be used to pass var and out parameters.

¢ if a routine’s formal parameters are untyped, numerals and true constants with
numeric values cannot be used as actual parameters.

When you call a routine that uses default parameter values, all actual parameters
following the first accepted default must also use the default values; calls of the form
SomeFunction(,,X) are not legal.

You can omit parentheses when passing all and only the default parameters to a
routine. For example, given the procedure

procedure DoSomething(X: Real = 1.0; I: Integer = 0; S: string = '');
the following calls are equivalent.

DoSomething () ;
DoSomething;

Procedures and functions 6-17

Calling procedures and functions

Open array constructors

Open array constructors allow you to construct arrays directly within function and
procedure calls. They can be passed only as open array parameters or variant open
array parameters.

An open array constructor, like a set constructor, is a sequence of expressions
separated by commas and enclosed in brackets. For example, given the declarations

var I, J: Integer;
procedure Add(A: array of Integer);

you could call the Add procedure with the statement
Add([5, 7, I, I+ J1);
This is equivalent to

var Temp: array[0..3] of Integer;

=27

[0] 5
[1] := 7;
Temp[2] := I;
[3] I

i

+J;
Add (Temp) ;

Open array constructors can be passed only as value or const parameters. The
expressions in a constructor must be assignment-compatible with the base type of the
array parameter. In the case of a variant open array parameter, the expressions can be
of different types.

6-18 Object Pascal Language Guide

Classes and objects

A class, or class type, defines a structure consisting of fields, methods, and properties.
Instances of a class type are called objects. The fields, methods, and properties of a
class are called its components or members.

* A field is essentially a variable that is part of an object. Like the fields of a record, a
class’s fields represent data items that exist in each instance of the class.

¢ A method is a procedure or function associated with a class. Most methods
operate on objects—that is, instances of a class. Some methods (called class
methods) operate on class types themselves.

* A property is an interface to data associated with an object (often stored in a field).
Properties have access specifiers, which determine how their data are read and
modified. From other parts of a program—outside of the object itself—a property
appears in most respects like a field.

Objects are dynamically allocated blocks of memory whose structure is determined
by their class type. Each object has a unique copy of every field defined in the class,
but all instances of a class share the same methods. Objects are created and destroyed
by special methods called constructors and destructors.

A variable of a class type is actually a pointer that references an object. Hence more
than one variable can refer to the same object. Like other pointers, class-type
variables can hold the value nil. But you don’t have to explicitly dereference a class-
type variable to access the object it points to. For example, SomeObject .Size := 100
assigns the value 100 to the Size property of the object referenced by SomeObject; you
would not write this as SomeObject”.Size := 100.

Class types

A class type must be declared and given a name before it can be instantiated. (You
cannot define a class type within a variable declaration.) Declare classes only in the
outermost scope of a program or unit, not in a procedure or function declaration.

Classes and objects 7-1

Class types

A class type declaration has the form

type className = class (ancestorClass)
memberList
end;

where className is any valid identifier, (ancestorClass) is optional, and memberList
declares members—that is, fields, methods, and properties—of the class. If you omit
(ancestorClass), then the new class inherits directly from the predefined TObject class.
If you include (ancestorClass) and memberList is empty, you can omit end. A class type
declaration can also include a list of interfaces implemented by the class; see
“Implementing interfaces” on page 10-4.

Methods appear in a class declaration as function or procedure headings, with no
body. Defining declarations for each method occur elsewhere in the program.

For example, here is the declaration of the TListColumns class from the ComCtrls unit
of Delphi’s VCL.

type
TListColumns = class(TCollection)
private
FOwner: TCustomListView;
function GetItem(Index: Integer): TListColumn;
procedure SetItem(Index: Integer; Value: TListColumn);
protected
function GetOwner: TPersistent; override;
procedure Update(Item: TCollectionItem); override;
public
constructor Create(AOwner: TCustomListView);
function Add: TListColumn;
property Owner: TCustomListView read FOwner;
property Items[Index: Integer]: TListColumn read GetItem write SetItem; default;
end;

TListColumns descends from TCollection (in the Classes unit), inheriting most of its
members. But it defines—or redefines—several methods and properties, including its
constructor method, Create. Its destructor, Destroy, is inherited without change from
TCollection, and so is not redeclared. Each member is declared as private, protected, or
public (this class has no published members); for explanations of these terms, see
“Visibility of class members” on page 7-4.

Given this declaration, we can create a TListColumns with

var ListColumns: TListColumns;
ListColumns := TListColumns.Create(SomeListView);

where SomeListView is a variable that holds a TCustomListView object.

Inheritance and scope

When you declare a class, you can specify its immediate ancestor. For example,
type TSomeControl = class(TWinControl);

declares a class called TSomeControl that descends from TWinControl. A class type
automatically inherits all of the members from its immediate ancestor. Each class can

7-2 Object Pascal Language Guide

Classtypes

declare new members and can redefine inherited ones, but a class cannot remove
members defined in an ancestor. Hence TSomeControl contains all of the members
defined in TWinControl and in each of TWinControl’s ancestors.

The scope of a member’s identifier starts at the point where the member is declared,
continues to the end of the class declaration, and extends over all descendants of the
class and the blocks of all methods defined in the class and its descendants.

TObject and TClass

The TObject class, declared in the System unit, is the ultimate ancestor of all other classes.
TObject defines only a handful of methods, including a basic constructor and destructor.
In addition to TObject, the System unit declares the class-reference type TClass:

TClass = class of TObject;

For more information about TObject, see the online VCL reference. For more
information about class-reference types, see “Class references” on page 7-22.

If the declaration of a class type doesn’t specify an ancestor, the class inherits directly
from TObject. Thus

type T™MyClass = class
end;
is equivalent to

type TlMyClass = class(TObject)
end;

The latter form is recommended for readability.

Compatibility of class types

A class type is assignment-compatible with its ancestors. Hence a variable of a class type
can reference an instance of any descendant type. For example, given the declarations
type
TFigure = class(TObject);
TRectangle = class(TFigure);
TSquare = class(TRectangle);
var
Fig: TFigure;

the variable Fig can be assigned values of type TFigure, TRectangle, and TSquare.

Object types

As an alternative to class types, you can declare object types using the syntax

type objectTypeName = object (ancestorObjectType)
memberList
end;

where objectTypeName is any valid identifier, (ancestorObjectType) is optional, and
memberList declares fields, methods, and properties. If (ancestorObjectType) is

Classes and objects 7-3

Class types

omitted, then the new type has no ancestor. Object types cannot have published
members.

Since object types do not descend from TObject, they provide no built-in constructors,
destructors, or other methods. You can create instances of an object type using the
New procedure and destroy them with the Dispose procedure, or you can simply
declare variables of an object type, just as you would with records.

Object types are supported for backward compatibility only. Their use is not
recommended.

Visibility of class members

Every member of a class has an attribute called visibility, which is indicated by one of
the reserved words private, protected, public, published, or automated. For
example,

published property Color: TColor read GetColor write SetColor;

declares a published property called Color. Visibility determines where and how a
member can be accessed, with private representing the least accessibility, protected
representing an intermediate level of accessibility, and public, published, and
automated representing the greatest accessibility.

If a member’s declaration appears without its own visibility specifier, the member
has the same visibility as the one that precedes it. Members at the beginning of a class
declaration that don’t have a specified visibility are by default published, provided
the class is compiled in the {$M+} state or is derived from a class compiled in the
{$M+1} state; otherwise, such members are public.

For readability, it is best to organize a class declaration by visibility, placing all the
private members together, followed by all the protected members, and so forth. This
way each visibility reserved word appears at most once and marks the beginning of a
new “section” of the declaration. So a typical class declaration should like this:

type

TMyClass = class(TControl)
private

: { private declarations here}
protected

* { protected declarations here }
public

* { public declarations here }
published

* { published declarations here }
end;

You can increase the visibility of a member in a descendant class by redeclaring it,
but you cannot decrease its visibility. For example, a protected property can be made
public in a descendant, but not private. Moreover, published members cannot
become public in a descendant class. For more information, see “Property overrides
and redeclarations” on page 7-20.

7-4 Object Pascal Language Guide

Classtypes

Private, protected, and public members

A private member is invisible outside of the unit or program where its class is
declared. In other words, a private method cannot be called from another module,
and a private field or property cannot be read or written to from another module. By
placing related class declarations in the same module, you can give the classes access
to one another’s private members without making those members more widely
accessible.

A protected member is visible anywhere in the module where its class is declared and
from any descendant class, regardless of the module where the descendant class
appears. In other words, a protected method can be called, and a protected field or
property read or written to, from the definition of any method belonging to a class
that descends from the one where the protected member is declared. Members that
are intended for use only in the implementation of derived classes are usually
protected.

A public member is visible wherever its class can be referenced.

Published members

Published members have the same visibility as public members. The difference is that
runtime type information (RTTI) is generated for published members. RTTI allows an
application to query the fields and properties of an object dynamically and to locate
its methods. Delphi uses RTTI to access the values of properties when saving and
loading form (.DFM) files, to display properties in the Object Inspector, and to
associate specific methods (called event handlers) with specific properties (called
events).

Published properties are restricted to certain data types. Ordinal, string, class,
interface, and method-pointer types can be published. So can set types, provided the
upper and lower bounds of the base type have ordinal values between 0 and 31. (In
other words, the set must fit in a byte, word, or double word.) Any real type except
Real48 can be published. Array properties cannot be published.

All methods are publishable, but a class cannot publish two or more overloaded
methods with the same name. Fields can be published only if they are of a class or
interface type.

A class cannot have published members unless it is compiled in the {$M+} state or
descends from a class compiled in the {$M+} state. Most classes with published
members derive from TPersistent, which is compiled in the {$M+1} state, so it is
seldom necessary to use the $M directive.

Automated members

Automated members have the same visibility as public members. The difference is
that Automation type information (required for Automation servers) is generated for
automated members. Automated members typically appear only in classes derived
from the TAutoObject class in the OleAuto unit. This unit, and the automated reserved
word itself, are maintained for backward compatibility. The TAutoObject class in the
ComOPbj unit does not use automated.

Classes and objects 7-5

Class types

The following restrictions apply to methods and properties declared as automated.

* The types of all properties, array property parameters, method parameters, and
function results must be automatable. The automatable types are Byte, Currency,
Real, Double, Longint, Integer, Single, Smallint, AnsiString, WideString, TDateTime,
Variant, OleVariant, WordBool, and all interface types.

¢ Method declarations must use the default register calling convention. They can be
virtual, but not dynamic.

¢ Property declarations can include access specifiers (read and write) but other
specifiers (index, stored, default, and nodefault) are not allowed. Access
specifiers must list a method identifier that uses the default register calling
convention; field identifiers are not allowed.

e Property declarations must specify a type. Property overrides are not allowed.
perty pecity a typ perty

The declaration of an automated method or property can include a dispid directive,
which must be followed by an integer constant that specifies an Automation dispatch
ID for the member. Otherwise, the compiler automatically assigns the member a
dispatch ID that is one larger than the largest dispatch ID used by any method or
property in the class and its ancestors. Specifying an already used ID in a dispid
directive causes an error.

For more information about Automation, see “Automation objects” on page 10-10.

Forward declarations and mutually dependent classes

If the declaration of a class type ends with the word class and a semicolon—that is, if
it has the form

type className = class;

with no ancestor or class members listed after the word class—then it is a forward
declaration. A forward declaration must be resolved by a defining declaration of the
same class within the same type declaration section. In other words, between a
forward declaration and its defining declaration, nothing can occur except other type
declarations.

Forward declarations allow mutually dependent classes. For example,

type
TFigure = class; // forward declaration
TDrawing = class
Figure: TFigure;
end;
TFigure = class // defining declaration
Drawing: TDrawing;

end;

7-6 Object Pascal Language Guide

Fields

Fields

Do not confuse forward declarations with complete declarations of types that derive
from TObject without declaring any class members.

type
TFirstClass = class; // this is a forward declaration
TSecondClass = class // this is a complete class declaration
end; //

TThirdClass = class(TObject); // this is a complete class declaration

A field is like a variable that belongs to an object. Fields can be of any type, including
class types. (That is, fields can hold object references.) Fields are usually private.

To define a field member of a class, simply declare the field as you would a variable.
All field declarations must occur before any property or method declarations. For
example, the following declaration creates a class called TNumber whose only
member, other than the methods is inherits from TObject, is an integer field called Int.

type TNumber = class
Int: Integer;
end;

Fields are statically bound; that is, references to them are fixed at compile time. To
see what this means, consider the following code.

type
TAncestor = class
Value: Integer;
end;

TDescendant = class(TAncestor)
Value: string; // hides the inherited Value field
end;

var

MyObject: TAncestor;
begin

MyObject := TDescendant.Create;

MyObject.Value := 'Hello!'; // error

TDescendant (MyObject) .Value := 'Hello!'; // works!
end;

Although MyObject holds an instance of TDescendant, it is declared as TAncestor. The
compiler therefore interprets MyObject.Value as referring to the (integer) field
declared in TAncestor. Both fields, however, exist in the TDescendant object; the
inherited Value is hidden by the new one, and can be accessed through a typecast.

Classes and objects 7-7

Methods

Methods

A method is a procedure or function associated with a class. A call to a method
specifies the object (or, if it is a class method, the class) that the method should
operate on. For example,

SomeObject.Free

calls the Free method in SomeObject.

Method implementations

Within a class declaration, methods appear as procedure and function headings,
which work like forward declarations. Somewhere after the class declaration, but
within the same module, each method must be implemented by a defining
declaration. For example, suppose the declaration of TMyClass includes a method
called DoSomething:

type
TMyClass = class(TObject)

procedure DoSomething;

end;
A defining declaration for DoSomething must occur later in the module:
procedure TMyClass.DoSomething;
begin
el:ld ;
While a class can be declared in either the interface or the implementation section of a
unit, defining declarations for a class’s methods must be in the implementation section.

In the heading of a defining declaration, the method name is always qualified with
the name of the class to which it belongs. The heading can repeat the parameter list
from the class declaration; if it does so, the order, type, and names of the parameters
must match exactly, and, if the method is a function, so must the return value.

Inherited

The reserved word inherited plays a special role in implementing polymorphic
behavior. It can occur in method definitions, with or without an identifier after it.

If inherited is followed by a method identifier, it represents a normal method call,
except that the search for the method begins with the immediate ancestor of the
enclosing method’s class. For example, when

inherited Create(...);
occurs in the definition of a method, it calls the inherited Create.

When inherited has no identifier after it, it refers to the inherited method with the
same name as the enclosing method. In this case, inherited can appear with or

7-8 Object Pascal Language Guide

Methods

without parameters; if no parameters are specified, it passes to the inherited method
the same parameters with which the enclosing method was called. For example,

inherited;

occurs frequently in the implementation of constructors. It calls the inherited
constructor with the same parameters that were passed to the descendant.

Self

Within the implementation of a method, the identifier Self references the object in
which the method is called. For example, here is the implementation of TCollection’s
Add method in the Classes unit of the VCL.

function TCollection.Add: TCollectionItem;
begin

Result := FItemClass.Create(Self);
end;

The Add method calls the Create method in the class referenced by the FltemClass
field, which is always a TCollectionltem descendant. TCollectionltem.Create takes a
single parameter of type TCollection, so Add passes it the TCollection instance object
where Add is called. This is illustrated in the following code.

var MyCollection: TCollection;

MyCollection.Add // MyCollection is passed to the TCollectionItem.Create method

Self is useful for a variety of reasons. For example, a member identifier declared in a
class type might be redeclared in the block of one of the class’s methods. In this case,
you can access the original member identifier as Self.Identifier.

For information about Self in class methods, see “Class methods” on page 7-24.

Method binding

Methods can be static (the default), virtual, or dynamic. Virtual and dynamic methods
can be overridden, and they can be abstract. These designations come into play when a
variable of one class type holds a value of a descendant class type. They determine
which implementation is activated when a method is called.

Static methods

Methods are by default static. When a static method is called, the declared (compile-time)
type of the class or object variable used in the method call determines which
implementation to activate. In the following example, the Draw methods are static.

type
TFigure = class
procedure Draw;
end;
TRectangle = class(TFigure)
procedure Draw;
end;

Classes and objects 7-9

Methods

Given these declarations, the following code illustrates the effect of calling a static
method. In the second call to Figure.Draw, the Figure variable references an object of
class TRectangle, but the call invokes the implementation of Draw in TFigure, because
the declared type of the Figure variable is TFigure.

var
Figure: TFigure;
Rectangle: TRectangle;

begin
Figure := TFigure.Create;
Figure.Draw; // calls TFigure.Draw
Figure.Destroy;
Figure := TRectangle.Create;
Figure.Draw; // calls TFigure.Draw
TRectangle (Figure) .Draw; // calls TRectangle.Draw
Figure.Destroy;
Rectangle := TRectangle.Create;
Rectangle.Draw; // calls TRectangle.Draw
Rectangle.Destroy;

end;

Virtual and dynamic methods

To make a method virtual or dynamic, include the virtual or dynamic directive in its
declaration. Virtual and dynamic methods, unlike static methods, can be overridden in
descendant classes. When an overridden method is called, the actual (runtime) type
of the class or object used in the method call—not the declared type of the variable—
determines which implementation to activate.

To override a method, redeclare it with the override directive. An override
declaration must match the ancestor declaration in the order and type of its
parameters and in its result type (if any).

In the following example, the Draw method declared in TFigure is overridden in two
descendant classes.

type

TFigure = class
procedure Draw; virtual;

end;

TRectangle = class(TFigure)
procedure Draw; override;

end;

TEllipse = class(TFigure)
procedure Draw; override;

end;

Given these declarations, the following code illustrates the effect of calling a virtual
method through a variable whose actual type varies at runtime.

var
Figure: TFigure;

begin
Figure := TRectangle.Create;
Figure.Draw; // calls TRectangle.Draw
Figure.Destroy;

7-10 Object Pascal Language Guide

Methods

Figure := TEllipse.Create;
Figure.Draw; // calls TEllipse.Draw
Figure.Destroy;

end;

Only virtual and dynamic methods can be overridden. All methods, however, can be
overloaded; see “Overloading methods” on page 7-12.

Virtual versus dynamic

Virtual and dynamic methods are semantically equivalent. They differ only in the
implementation of method-call dispatching at runtime. Virtual methods optimize for
speed, while dynamic methods optimize for code size.

In general, virtual methods are the most efficient way to implement polymorphic
behavior. Dynamic methods are useful when a base class declares many overridable
methods which are inherited by many descendant classes in an application, but only
occasionally overridden.

Overriding versus hiding

If a method declaration specifies the same method identifier and parameter signature
as an inherited method, but doesn’t include override, the new declaration merely
hides the inherited one without overriding it. Both methods exist in the descendant
class, where the method name is statically bound. For example,

type
T1 = class(TObject)
procedure Act; virtual;
end;
T2 = class(T1)
procedure Act; // Act is redeclared, but not overridden
end;

var
SomeObject: T1;

begin
SomeObject := T2.Create;
SomeObject.Act; // calls T1.Act

end;

Reintroduce

The reintroduce directive suppresses compiler warnings about hiding previously
declared virtual methods. For example,

procedure DoSomething; reintroduce; // the ancestor class also has a DoSomething method

Use reintroduce when you want to hide an inherited virtual method with a new one.
Abstract methods

An abstract method is a virtual or dynamic method that has no implementation in the
class where it is declared. Its implementation is deferred to a descendant class.

Classes and objects 7-11

Methods
Abstract methods must be declared with the directive abstract after virtual or
dynamic. For example,
procedure DoSomething; virtual; abstract;

You can call an abstract method only in a class or instance of a class in which the
method has been overridden.

Overloading methods

A method can be redeclared using the overload directive. In this case, if the
redeclared method has a different parameter signature from its ancestor, it overloads
the inherited method without hiding it. Calling the method in a descendant class
activates whichever implementation matches the parameters in the call.

If you overload a virtual method, use the reintroduce directive when you redeclare it
in descendant classes. For example,

type
T1 = class(TObject)
procedure Test (I: Integer); overload; virtual;
end;
T2 = class(T1)
procedure Test(S: string); reintroduce; overload;
end;

SomeObject := T2.Create;
SomeObject.Test ('Hello!'); // calls T2.Test
SomeObject.Test (7); // calls T1.Test

Within a class, you cannot publish multiple overloaded methods with the same
name. Maintenance of runtime type information requires a unique name for each
published member.

type
TSomeClass = class
published
function Func(P: Integer): Integer;
function Func(P: Boolean): Integer // error

Methods that serve as property read or write specifiers cannot be overloaded.

The implementation of an overloaded method must repeat the parameter list from
the class declaration. For more information about overloading, see “Overloading
procedures and functions” on page 6-7.

Constructors

A constructor is a special method that creates and initializes instance objects. The
declaration of a constructor looks like a procedure declaration, but it begins with the
word constructor. Examples:

constructor Create;
constructor Create(AOwner: TComponent);

7-12 Object Pascal Language Guide

Methods

Constructors must use the default register calling convention. Although the
declaration specifies no return value, when a constructor is called using a class
reference, it returns a reference to the object it creates.

A class can have more than one constructor, but most have only one. It is
conventional to call the constructor Create.

To create an object, call the constructor method in a class type. For example,
MyObject := TMyClass.Create;

This allocates storage for the new object on the heap, sets the values of all ordinal
fields to zero, assigns nil to all pointer and class-type fields, and makes all string
fields empty. Other actions specified in the constructor implementation are
performed next; typically, objects are initialized based on values passed as
parameters to the constructor. Finally, the constructor returns a reference to the
newly allocated and initialized object. The type of the returned value is the same as
the class type specified in the constructor call.

If an exception is raised during execution of a constructor that was invoked on a class
reference, the Destroy destructor is automatically called to destroy the unfinished object.

When a constructor is called using an object reference (rather than a class reference),
it does not create an object or return a value. Instead, the constructor operates on the
specified object, executing only the statements in the constructor’s implementation. A
constructor is typically invoked on an object reference in conjunction with the
reserved word inherited to execute an inherited constructor.

Here is an example of a class type and its constructor.

type
TShape = class(TGraphicControl)
private
FPen: TPen;

FBrush: TBrush;
procedure PenChanged(Sender: TObject);
procedure BrushChanged (Sender: TObject);

public
constructor Create(Owner: TComponent); override;
destructor Destroy; override;

end;
constructor TShape.Create(Owner: TComponent);
begin
inherited Create(Owner); // Initialize inherited parts
Width := 65; // Change inherited properties
Height := 65;
FPen := TPen.Create; // Initialize new fields
FPen.OnChange := PenChanged;
FBrush := TBrush.Create;
FBrush.OnChange := BrushChanged;
end;

The first action of a constructor is usually to call an inherited constructor to initialize
the object’s inherited fields. The constructor then initializes the fields introduced in the

Classes and objects 7-13

Methods

descendant class. Because a constructor always clears the storage it allocates for a new
object, all fields start with a value of zero (ordinal types), nil (pointer and class types),

empty (string types), or Unassigned (variants). Hence there is no need to initialize fields
in a constructor’s implementation except to nonzero or nonempty values.

When invoked through a class-type identifier, a constructor declared as virtual is
equivalent to a static constructor. When combined with class-reference types,
however, virtual constructors allow polymorphic construction of objects—that is,
construction of objects whose types aren’t known at compile time. (See “Class
references” on page 7-22.)

Destructors

A destructor is a special method that destroys the object where it is called and
deallocates its memory. The declaration of a destructor looks like a procedure
declaration, but it begins with the word destructor. Examples:

destructor Destroy;
destructor Destroy; override;

Destructors must use the default register calling convention. Although a class can
have more than one destructor, it is recommended that each class override the
inherited Destroy method and declare no other destructors.

To call a destructor, you must reference an instance object. For example,
MyObject .Destroy;

When a destructor is called, actions specified in the destructor implementation are
performed first. Typically, these consist of destroying any embedded objects and
freeing resources that were allocated by the object. Then the storage that was
allocated for the object is disposed of.

Here is an example of a destructor implementation.

destructor TShape.Destroy;
begin

FBrush.Free;

FPen.Free;

inherited Destroy;
end;

The last action in a destructor’s implementation is typically to call the inherited
destructor to destroy the object’s inherited fields.

When an exception is raised during creation of an object, Destroy is automatically
called to dispose of the unfinished object. This means that Destroy must be prepared
to dispose of partially constructed objects. Because a constructor sets the fields of a
new object to zero or empty values before performing other actions, class-type and
pointer-type fields in a partially constructed object are always nil. A destructor
should therefore check for nil values before operating on class-type or pointer-type
fields. Calling the Free method (defined in TObject), rather than Destroy, offers a
convenient way of checking for nil values before destroying an object.

7-14 Object Pascal Language Guide

Methods

Message handlers

Message handlers are methods that implement responses to dynamically dispatched
messages. Delphi’s VCL uses message handlers to respond to Windows messages.

A message handler is created by including the message directive in a method
declaration, followed by an integer constant between 1 and 49151 which specifies the
message ID. For message handlers in VCL controls, the integer constant must be one
of the Windows message IDs defined, along with corresponding record types, in the
Messages unit. For example,

type
TTextBox = class(TCustomControl)
private
procedure WMChar (var Message: TWMChar); message WM_CHAR;

enci;
A message handler must be a procedure that takes a single var parameter.

A message handler does not have to include the override directive to override an
inherited message handler. In fact, it doesn’t have to specify the same method name
or parameter type as the method it overrides. The message ID alone determines
which message the method responds to and whether it is an override.

Implementing message handlers

The implementation of a message handler can call the inherited message handler, as
in this example:

procedure TTextBox.WMChar (var Message: TWMChar);
begin
if Chr(Message.CharCode) = #13 then
ProcessEnter
else
inherited;
end;

The inherited statement searches backward through the class hierarchy and invokes
the first message handler with the same ID as the current method, automatically
passing the message record to it. If no ancestor class implements a message handler
for the given ID, inherited calls the DefaultHandler method originally defined in
TObject.

The implementation of DefaultHandler in TObject simply returns without performing
any actions. By overriding DefaultHandler, a class can implement its own default
handling of messages. The DefaultHandler method for VCL controls calls the
Windows DefWindowProc function.

Message dispatching

Message handlers are seldom called directly. Instead, messages are dispatched to an
object using the Dispatch method inherited from TObject:

procedure Dispatch(var Message);

Classes and objects 7-15

Properties
The Message parameter passed to Dispatch must be a record whose first entry is a field
of type Cardinal containing a message ID. See the Messages unit for examples.

Dispatch searches backward through the class hierarchy (starting from the class of the
object where it is called) and invokes the first message handler for the ID passed to it.
If no message handler is found for the given ID, Dispatch calls DefaultHandler.

Properties

A property, like a field, defines an attribute of an object. But while a field is merely a
storage location whose contents can be examined and changed, a property associates
specific actions with reading or modifying its data. Properties provide control over
access to an object’s attributes, and they allow attributes to be computed.

The declaration of a property specifies a name and a type, and includes at least one
access specifier. The syntax of a property declaration is

property propertyName[indexes]: type index integerConstant specifiers;
where
* propertyName is any valid identifier.

* [indexes] is optional and is a sequence of parameter declarations separated by
semicolons. Each parameter declaration has the form identifier;, ..., identifier,:
type. For more information, see “Array properties” on page 7-18.

¢ the index integerConstant clause is optional. For more information, see “Index
specifiers” on page 7-19.

* specifiers is a sequence of read, write, stored, default (or nodefault), and
implements specifiers. Every property declaration must have at least one read or
write specifier. (For information about implements, see “Implementing interfaces
by delegation” on page 10-6.)

Properties are defined by their access specifiers. Unlike fields, properties cannot be
passed as var parameters, nor can the @ operator be applied to a property. The reason
is that a property doesn’t necessarily exist in memory. It could, for instance, have a
read method that retrieves a value from a database or generates a random value.

Property access

Every property has a read specifier, a write specifier, or both. These are called access
specifiers and they have the form

read fieldOrMethod
write fieldOrMethod

where fieldOrMethod is the name of a field or method declared in the same class as the
property or in an ancestor class.

o If fieldOrMethod is declared in the same class, it must occur before the property
declaration. If it is declared in an ancestor class, it must be visible from the

7-16 Object Pascal Language Guide

Properties

descendant; that is, it cannot be a private field or method of an ancestor class
declared in a different unit.

o If fieldOrMethod is a field, it must be of the same type as the property.

e If fieldOrMethod is a method, it cannot be overloaded. Moreover, access methods
for a published property must use the default register calling convention.

* In a read specifier, if fieldOrMethod is a method, it must be a parameterless
function whose result type is the same as the property’s type.

* In a write specifier, if fieldOrMethod is a method, it must be a procedure that takes
a single value or const parameter of the same type as the property.

For example, given the declaration
property Color: TColor read GetColor write SetColor;
the GetColor method must be declared as
function GetColor: TColor;
and the SetColor method must be declared as one of these:

procedure SetColor(Value: TColor);
procedure SetColor (const Value: TColor);

(The name of SetColor’s parameter, of course, doesn’t have to be Value.)

When a property is referenced in an expression, its value is read using the field or
method listed in the read specifier. When a property is referenced in an assignment
statement, its value is written using the field or method listed in the write specifier.

The example below declares a class called TCompass with a published property called
Heading. The value of Heading is read through the FHeading field and written through
the SetHeading procedure.

type
THeading = 0